• 제목/요약/키워드: Real time signal processing

검색결과 810건 처리시간 0.028초

실시간 음성분석도구의 MatLab 구현 (Matlab Implementation of Real-time Speech Analysis Tool)

  • 박일서;김대현;조철우
    • 대한음성학회지:말소리
    • /
    • 제44호
    • /
    • pp.93-104
    • /
    • 2002
  • There are many speech analysis tools available. Among them real-time analysis tool is very useful for interactive experiments. A real-time speech analysis tool was implemented using Matlab. Matlab is a very widely used general purpose signal processing tool. In general, its computational speed is relatively lower than that of the codes from conventional programming languages. Especially, real-time analysis including input of signal and output of the result was not possible in the past. However, due to the improvement of computing power of PCs and inclusion of real-time I/O toolboxes in Matlab, real-time analysis is now possible in some extent by Matlab only. In this experiment, we tried to implement a real-time speech analysis tool using Matlab. Pitch and spectral information is computed in real-time. From the result it is shown that such real-time applications can be implemented easily using Matlab.

  • PDF

Implementation of Extended Kalman Filter for Real-Time Noncontact ECG Signal Acquisition in Android-Based Mobile Monitoring System

  • Rachim, Vega Pradana;Kang, Sung-Chul;Chung, Wan-Young;Kwon, Tae-Ha
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.7-14
    • /
    • 2014
  • Noncontact electrocardiogram (ECG) measurement using capacitive-coupled technique is a very reliable long-term noninvasive health-care remote monitoring system. It can be used continuously without interrupting the daily activities of the user and is one of the most promising developments in health-care technology. However, ECG signal is a very small electric signal. A robust system is needed to separate the clean ECG signal from noise in the measurement environment. Noise may come from many sources around the system, for example, bad contact between the sensor and body, common-mode electrical noise, movement artifacts, and triboelectric effect. Thus, in this paper, the extended Kalman filter (EKF) is applied to denoise a real-time ECG signal in capacitive-coupled sensors. The ECG signal becomes highly stable and noise-free by combining the common analog signal processing and the digital EKF in the processing step. Furthermore, to achieve ubiquitous monitoring, android-based application is developed to process the heart rate in a realtime ECG measurement.

An Efficient Method to Track GPS L1 C/A and Galileo E1B CBOC(6,1,1/11) Signal Simultaneously using a Low Cost GPU in SDR

  • Park, Jong-Il;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권4호
    • /
    • pp.337-345
    • /
    • 2020
  • In this paper, an efficient signal tracking method to simultaneously track both GPS L1 C/A and Galileo E1B CBOC(6,1,1/11) using a low cost GPU is proposed. In the existing method that each GNSS signal is processed within 1 ms, more than 2 ms processing time is required in GPU to process 4 ms CBOC signal. It means that real time operation is possible if only Galileo E1B CBOC signal is concerned. But when both GPS C/A and Galileo CBOC is required, it cannot process GPS C/A signal in real time. To process 1 ms GPS C/A and 4 ms Galileo CBOC signal in real time, 4 ms Galileo CBOC signal is divided into 4 by 1 ms signal block in the proposed method. Specially, a buffer that simultaneously manages 1 ms and 4 ms signals is designed. In addition, a module that accumulates the 1 ms correlation value of the Galileo CBOC by 4 ms and passes it to the PLL and DLL is implemented. The operation and performance are evaluated with real measurements in the GPU based SDR. The experimental results show that tracking of more than 16 satellites of GPS C/A and Galileo E1B is possible using the proposed method.

광섬유 EFPI 센서를 이용한 나노 이송장치의 개발 (Development of nano-positioner using fiber optic EFPI sensor)

  • 박상욱;김대현;김천곤
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.302-307
    • /
    • 2005
  • Precision displacement of less than a few nm resolution was measured in real-time using fiber optic EFPI sensor. The novel method for real-time processing of analyzing EFPI output signal was developed and verified. Linearity in the mean values of interferometric light intensity among adjacent fringes was shown and verified the sinusoidal approximation algorithm that estimates past and coming fringe values. Real-time signal processing program was developed and the intensity signal of the EFPI sensor was transformed to the phase shift with this program. The resolution below $0.36{\sim}8.6$ nm in the displacement range of $0{\sim}300{\mu}m$ was obtained. The nano-positioner with a piezoelectric actuator and the EFPI sensor system was designed and tested. The positioner successfully reached to the desired destination within 1 nm accuracy.

디지탈 신호처리에 의한 실시간 태아 심전도 감시 시스템 (Real-time FECG monitoring system using digital signal processing)

  • 김남현;김원기;윤대희;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.580-585
    • /
    • 1990
  • This paper presents a real time FECG signal monitoring system in which an adaptive multichannel noise canceller is implemented using a Texas Instruments TMS32020 digital signal processor. Abdominal ECG signal is applied as the desired output and 3 chest ECG signals as the reference input signals of the adaptive multichannel noise canceller whose coefficients are updated using the LMS algorithms.

  • PDF

Real -Time ECG Signal Acquisition and Processing Using LabVIEW

  • Sharma, Akshay Kumar;Kim, Kyung Ki
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.162-171
    • /
    • 2020
  • The incidences of cardiovascular diseases are rapidly increasing worldwide. The electrocardiogram (ECG) is a test to detect and monitor heart issues via electric signals in the heart. Presently, detecting heart disease in real time is not only possible but also easy using the myDAQ data acquisition device and LabVIEW. Hence, this paper proposes a system that can acquire ECG signals in real time, as well as detect heart abnormalities, and through light-emitting diodes (LEDs) it can simultaneously reveal whether a particular waveform is in range or otherwise. The main hardware components used in the system are the myDAQ device, Vernier adapter, and ECG sensor, which are connected to ECG monitoring electrodes for data acquisition from the human body, while further processing is accomplished using the LabVIEW software. In the Results section, the proposed system is compared with some other studies based on the features detected. This system is tested on 10 randomly selected people, and the results are presented in the Simulation Results section.

웨이브렛 변환을 이용한 실시간 모니터링 ECG 텔레미트리 시스템 구현 (Implementation of Wavelet Transform for a Real time Monitoring ECG Telemetry System)

  • 박차훈;서희돈
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.27-32
    • /
    • 2002
  • 본 논문에서 제안한 텔레미트리 시스템은 생체신호를 중거리로 전송하기 위한 RF 송신기와 전자파 간섭의 영향이 없는 광을 매체로한 수신기이다. 텔레미트리 시스템은 of 65$\times$125$\times$45mm크기이며, RF 송신부, 광 수신부와 생체신호 처리를 위한 CMOS 칩으로 구성되어 있다. 제안된 텔레메트리 장점은 전자파에 노출을 최소화하면서 중거리(50m) 텔레메트리가 가능하여, 자유로운 상태에서의 모니터링이 가능하다. 관측 시스템은 실시간 처리를 위해 dual-processor구조로 설계했다. 본 연구에서는 1 채널 360Hz, 16 Bits의 심전도 데이터를 1.42초 간격으로 실시간 웨이브렛 변환할 수 있었다.

  • PDF

뇌파 및 Evoke potential을 이용한 실시간 Brain mapping system (Real-time brain mapping system using EEG and evoke potential)

  • 조상흠;김판기;박수경;김지은;송은;강만희;안창범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1983-1984
    • /
    • 2008
  • 뇌 활동의 전기적 신호인 뇌파(EEG)와 외부 자극에 대한 유발 전위(EP)를 측정하여 실시간으로 뇌지형도를 생성하는 real-time brain mapping system을 개발하였다. 측정 전극은 32채널을 사용하였고, EEG를 실시간 및 누적 주파수 분석을 통한 뇌파의 활성도 진단, EP를 측정하여 시각적/청각적 자극에 의한 유발 전위 분석을 할 수 있다. 본 시스템은 측정 대상군의 통계적 분석을 위한 Database를 구축하였고, 신뢰성 높은 뇌파 및 유발 전위 신호를 위하여 실시간 측정과정 및 측정 후 Data 검토과정에서 다양한 Artifact 제거 알고리즘이 도입되었다. 또한, 32 채널 Brain map을 구성하여 뇌파를 공간적으로 분석 가능하며, 시간 및 주파수의 증가에 따라 Brain map을 동영상화하여 시간적/주파수적 변화에 따른 분석이 가능하다.

  • PDF

비행 탑재 레이다의 이동 클러터 신호 수집 및 도플러 스팩트럼 특성 분석 (Moving Clutter Signal Measurement and Its Spectral Analysis for Airborne Pulse Doppler Radar)

  • 전인평;최민수;황광연;곽영길
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.439-442
    • /
    • 2005
  • An airborne radar performance can be sensitive to the variation of the Doppler center frequency and the spectral spread of the ground clutter return due to the radar platform moving and aspect angle of the scanning beam to the target. In this paper, for the performance test of the airborne pulsed Doppler radar system developed, the high-speed radar data acquisition system is implemented for acquiring the raw radar signal in real-time. Based on the various test scenarios from airborne-platform to the moving platform, the various radar target and clutter signals are collected and their spectrum is analyzed for the verification of the radar performance in the real-time flight test environments.

  • PDF