• Title/Summary/Keyword: Real time forecast

Search Result 268, Processing Time 0.03 seconds

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.133-140
    • /
    • 2007
  • Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimizea ETA(estimated time of arrival) and fuel consumption that shipping company and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Finally, It is assistance measure for ship's optimum navigation route safety planning & assessment.

  • PDF

A Study on Application of GSIS for Transportation Planning and Analysis of Traffic Volume (GSIS를 이용한 교통계획과 교통량분석에 관한 연구)

  • Choi, Jae-Hwa;Park, Hee-Ju
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.117-125
    • /
    • 1993
  • GSIS is a system that contains spatially referenced data that can be analyzed and converted to information for a specific set of purpose, or application. The key feature of a GSIS is the analysis of data to produce new information. The current emphasis in the transportation is to implement GSIS in conjunction with real time systems Requirements for a transportation GSIS are very different from the traditional GSIS software that has been designed for environmental and natural resource applications. A transportation GSIS may need to include the ability for franc volume, forecasting, pavement management A regional transportation planning model is actually a set of models that are used to inventory and then forecast a region's population, employment, income, housing and the demand of automobile and transit in a region. The data such as adminstration bound, m of landuse, road networks, location of schools, offices with populations are used in this paper. Many of these data are used for analyzing of traffic volume, traffic demand, time of mad construction using GSIS.

  • PDF

Simple Forecasting of Surface Ozone through a Statistical Approach

  • Ma, Chang-Jin;Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.539-547
    • /
    • 2018
  • Objectives: Ozone ($O_3$) advisories are issued by provincial/prefectural and city governments in Korea and Japan when oxidant concentrations exceed the criteria of the related country. Advisories issued only after exposure to high $O_3$ concentrations cannot be considered ideal measures. Forecasts of $O_3$ would be more beneficial to citizens' health and daily life than real-time advisories. The present study was undertaken to present a simplified forecasting model that can predict surface $O_3$ concentrations for the afternoon of the day of the forecast. Methods: For the construction of a simple and practical model, a multivariate regression model was applied. The monitored data on gases and climate variables from Japan's air quality networks that were recorded over nearly one year starting from April 2016 were applied as the subject for our model. Results: A well-known inverse correlation between $NO_2$ and $O_3$ was confirmed by the monitored data for Iksan, Korea and Fukuoka, Japan. Typical time fluctuations for $O_3$ and $NO_x$ were also found. Our model suggests that insolation is the most influential factor in determining the concentration of $O_3$. $CH_4$ also plays a major role in our model. It was possible to visually check for the fit of a theoretical distribution to the observed data by examining the probability-probability (P-P) scatter plot. The goodness of fit of the model in this study was also successfully validated through a comparison (r=0.8, p<0.05) of the measured and predicted $O_3$ concentrations. Conclusions: The advantage of our model is that it is capable of immediate forecasting of surface $O_3$ for the afternoon of the day from the routinely measured values of the precursor and meteorological parameters. Although a comparison to other approaches for $O_3$ forecasting was not carried out, the model suggested in this study would be very helpful for the citizens of Korea and Japan, especially during the $O_3$ season from May to June.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Extracting Risk Factors and Analyzing AHP Importance for Planning Phase of Real Estate Development Projects in Myanmar (미얀마 부동산 개발형사업 기획단계의 리스크 요인 추출 및 AHP 중요도 분석)

  • Kim, Sooyong;Chung, Jaihoon;Yang, Jinkook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.2
    • /
    • pp.3-11
    • /
    • 2021
  • Myanmar is an undeveloped country with high development value among Asian countries. Therefore, various countries including the U.S. are considering entering the market. In this respect, demand for real estate development project is forecast to grow on increased inflow of foreigners and Myanmar's economic growth. However, Myanmar is a high-risk country in terms of overseas companies, including national risk. In this study, we conducted an in-depth interview with experts (law, finance, technology, and local experts) after analyzing data on Myanmar to extract risk-causing factors. Through this, 106 risk factors were extracted, and the final risk classification system was established by conducting three-time groupings using the affinity diagramming. And the relative importance of each factor was presented using the analytic hierarchy process (AHP) technique. As a result, the country-related risk, the fund-related risk, and the pre-sale-related risk were highly important. The research results are expected to provide risk management standards to companies entering the Myanmar real estate development type project.

Automatic Calibration of Storage-Function Rainfall-Runoff Model Using an Optimization Technique (최적화(最適化) 기법(技法)에 의한 저유함수(貯留函數) 유출(流出) 모형(模型)의 자동보정(自動補正))

  • Shim, Soon Bo;Kim, Sun Koo;Ko, Seok Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.127-137
    • /
    • 1992
  • For the real-time control of a multi-purpose reservoir in case of a storm, it is absolutely necessary to forecast accurate flood inflows through a good rainfall-runoff model by calibrating the parameters with the on-line rainfall and water level data transmitted by the telemetering systems. To calibrate the parameters of a runoff model. the trial and error method of manual calibration has been adopted from the subjective view point of a model user. The object of this study is to develop a automatic calibration method using an optimization technique. The pattern-search algorithm was applied as an optimization technique because of the stability of the solution under various conditions. The object function was selected as the sum of the squares of differences between observed and fitted ordinates of the hydrograph. Two historical flood events were applied to verify the developed technique for the automatic calibration of the parameters of the storage-function rainfall-runoff model which has been used for the flood control of the Soyanggang multi-purpose reservoir by the Korea Water Resources Corporation. The developed method was verified to be much more suitable than the manual method in flood forecasting and real-time reservoir controlling because it saves calibration time and efforts in addition to the better flood forecasting capability.

  • PDF

Development of a Freeway Travel Time Forecasting Model for Long Distance Section with Due Regard to Time-lag (시간처짐현상을 고려한 장거리구간 통행시간 예측 모형 개발)

  • 이의은;김정현
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.51-61
    • /
    • 2002
  • In this dissertation, We demonstrated the Travel Time forecasting model in the freeway of multi-section with regard of drives' attitude. Recently, the forecasted travel time that is furnished based on expected travel time data and advanced experiment isn't being able to reflect the time-lag phenomenon specially in case of long distance trip, so drivers don't believe any more forecasted travel time. And that's why the effects of ATIS(Advanced Traveler Information System) are reduced. Therefore, in this dissertation to forecast the travel time of the freeway of multi-section reflecting the time-lag phenomenon & the delay of tollgate, we used traffic volume data & TCS data that are collected by Korea Highway Cooperation. Also keep the data of mixed unusual to applicate real system. The applied model for forecasting is consisted of feed-forward structure which has three input units & two output units and the back-propagation is utilized as studying method. Furthermore, the optimal alternative was chosen through the twelve alternative ideas which is composed of the unit number of hidden-layer & repeating number which affect studying speed & forecasting capability. In order to compare the forecasting capability of developed ANN model. the algorithm which are currently used as an information source for freeway travel time. During the comparison with reference model, MSE, MARE, MAE & T-test were executed, as the result, the model which utilized the artificial neural network performed more superior forecasting capability among the comparison index. Moreover, the calculated through the particularity of data structure which was used in this experiment.

Prediction of Failure Time of Tunnel Applying the Curve Fitting Techniques (곡선적합기법을 이용한 터널의 파괴시간 예측)

  • Yoon, Yong-Kyun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • The materials failure relation $\ddot{\Omega}=A{(\dot{\Omega})}^\alpha$ where $\Omega$ is a measurable quantity such as displacement and the dot superscript is the time derivative, may be used to analyze the accelerating creep of materials. Coefficients, A and $\alpha$, are determined by fitting given data sets. In this study, it is tried to predict the failure time of tunnel using the materials failure relation. Four fitting techniques of applying the materials failure relation are attempted to forecast a failure time. Log velocity versus log acceleration technique, log time versus log velocity technique, inverse velocity technique are based on the linear least squares fits and non-linear least squares technique utilizes the Levenberg-Marquardt algorithm. Since the log velocity versus log acceleration technique utilizes a logarithmic representation of the materials failure relation, it indicates the suitability of the materials failure relation applied to predict a failure time of tunnel. A linear correlation between log velocity and log acceleration appears satisfactory(R=0.84) and this represents that the materials failure relation is a suitable model for predicting a failure time of tunnel. Through comparing the real failure time of tunnel with the predicted failure times from four curve fittings, it is shown that the log time versus log velocity technique results in the best prediction.

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

Flood Runoff Analysis using Radar Rainfall and Vflo Model for Namgang Dam Watershed (레이더강우와 Vflo모형을 이용한 남강댐유역 홍수유출해석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.13-21
    • /
    • 2007
  • Recently, very short-term rainfall forecast using radar is required for regional flash flood according to climate change. This research is to evaluate the feasibility of GIS based distributed model using radar rainfall which can express temporal and spatial distribution in actual dam watershed during flood runoff period. Vflo model which was developed Oklahoma university was used as physical based distributed model, and Namgang dam watershed ($2,293km^2$) was applied as study site. Distributed rainfall according to grid resolution was generated by using K-RainVieux, preprocess program of radar rainfall, from JIN radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of distributed model(Vflo). Results of this research can provide a base for building of real-time short-term rainfall runoff forecast system according to flash flood in near future.

  • PDF