• Title/Summary/Keyword: Real time force control

Search Result 247, Processing Time 0.055 seconds

Development of Gasoline Direct Swirl Injector II (직접분사식 가솔린 선회분사기 개발에 관한 연구 II)

  • 박용국;이충원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.76-84
    • /
    • 2001
  • Generally fuel injection system using solenoid have some problems between control signal and mechanical movement like as time lag. Main purpose of the present study is to help the design optimization of GDSI for real engine application. We have adopted two different solenoid driving circuit, namely saturation and pick-hold type and have investigated experimentally the current, needle force, needle opening duration and injection quantity. The pick-hold type driving circuit surpassed a saturation type in the response time and pression control of injection quantity. Accordingly, Using characterization data of operating factors such as time constant, driving force and so on, can be evaluated and adjusted to obtain an optimum injector performance.

  • PDF

A Sealing Robot System for Cracks on Concrete Surfaces with Force Tracking Controller (다양한 형상의 콘크리트 표면 실링을 위한 로봇 시스템)

  • Cho, Cheol-Joo;Lim, Kye-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.374-381
    • /
    • 2016
  • The sealing technique is widely used for repairing the cracks on the surface of concrete and preventing their expansion in the future. However, it is difficult to ensure the safety of the workers when sealing large structures in inconvenient working environments. This paper presents the development of a sealing robot system to seal various shapes of concrete surface in rough conditions for a long time. If the robot can maintain the desired contact force, the cracks can be completely sealed. An impedance force tracking controller with slope estimator is proposed to calculate the surface slope in real time using the robot position. It predicts the next point in order to prevent the robot from disengaging from the contact surface owing to quick slope changes. The proposed method has been verified by experimental results.

A Study on Ship Path Planning Algorithm based on Real-time Ocean Environment (실해역 환경을 고려한 선박의 최적항해계획 알고리즘 연구)

  • Kim, Dongjun;Seol, Hyeonju;Kim, Jinju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.252-260
    • /
    • 2016
  • Unlike terrestrial transportation, marine transportation should consider environment factors in order to optimize path planning. This is because, ship's path planning is greatly influenced by real-time ocean environment-sea currents, wave and wind. Therefore, in this study, we suggest a ship path planning algorithm based on real-time ocean environment using not only $A^*$ algorithm but also path smoothing method. Moreover, in order to improve objective function value, we also consider ship's moving distance based on ship's location and real-time ocean environment data on grid map. The efficiency of the suggested algorithm is proved by comparing with $A^*$ algorithm only. This algorithm can be used as a reasonable automatics control system algorithm for unmaned ship.

A Study on Intelligent Trajectory Control for Prosthetic Arm by Pattern Recognition & Force Estimation Using EMG Signals (근전도신호의 패턴인식 및 힘추정을 통한 의수의 지능적 궤적제어에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.455-464
    • /
    • 1994
  • The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMG signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements.

  • PDF

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

Real-time Hybrid Testing a Building Structure Equipped with Full-scale MR dampers and Application of Semi-active Control Algorithms (대형 MR감쇠기가 설치된 건축구조물의 실시간 하이브리드 실험 및 준능동 알고리즘 적용)

  • Park, Eun-Churn;Lee, Sung-Kyung;Lee, Heon-Jae;Moon, Suk-Jun;Jung, Hyung-Jo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.465-474
    • /
    • 2008
  • The real-time hybrid testing method(RT-HYTEM) is a structural testing technique in which the numerical integration of the equation of motion for a numerical substructure and the physical testing for an experimental substructure are performed simultaneously in real-time. This study presents the quantitative evaluation of the seismic performance of a building structure installed with an passive and semi-active MR damper by using RT-HYTEM. The building model that was identified from the force-vibration testing results of a real-scaled 5-story building is used as the numerical substructure, and an MR damper corresponding to an experimental substructure is physically tested by using the universal testing machine(UTM). The RT-HYTEM implemented in this study is validated because the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained by using the Bouc-Wen model as the control force of the MR damper respect to input currents were in good agreement. Also for preliminary study, some semi-active control algorithms were applied to the MR damper in order to control the structural responses optimally. Comparing between the test results of semi-active control using RT-HYTEM and numerical analysis results show that the RT-HYTEM is more resonable than numerical analysis to evaluate the performance of semi-active control algorithms.

Controlling Position of Virtual Reality Contents with Mouth-Wind and Acceleration Sensor

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.57-63
    • /
    • 2019
  • In this paper, we propose a new framework to control VR(Virtual reality) contents in real time using user's mouth-wind and acceleration sensor of mobile device. In VR, user interaction technology is important, but various user interface methods is still lacking. Most of the interaction technologies are hand touch screen touch or motion recognition. We propose a new interface technology that can interact with VR contents in real time using user's mouth-wind method with acceleration sensor. The direction of the mouth-wind is determined using the angle and position between the user and the mobile device, and the control position is adjusted using the acceleration sensor of the mobile device. Noise included in the size of the mouth wind is refined using a simple average filter. In order to demonstrate the superiority of the proposed technology, we show the result of interacting with contents in game and simulation in real time by applying control position and mouth-wind external force to the game.

The Control of a flexible Robotic Finger Driven by PZT (압전소자로 구동되는 유연성 로봇 핑거의 제어)

  • 류재춘;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

Virtual Reality Game Modeling for a Haptic Jacket

  • Bae, Hee-Jung;Jang, Byung-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.882-885
    • /
    • 2003
  • In this paper, we describe a haptic jacket and wheel as a haptic interface to enhance VR game realism. Building upon the VR game system using this devices, our haptic interface technique allows the user to intuitive interact on game contents, and then to sense the game event properties such as walking, attacking, driving and fire in a natural way. In addition, we extended the initial haptic model to support haptic decoration and dynamic interactions due to the added game event in a real time display. An application example presented here is a VR Dino-Attack game. This game supports interactions among dynamic and our intuitive haptic interface. Modeling physic interactions involves precise collision detection, real-time force computation, and high control-loop bandwidth.

  • PDF

A Study on Real Time Control of Moving Stuff Action Through Iterative Learning for Mobile-Manipulator System

  • Kim, Sang-Hyun;Kim, Du-Beum;Kim, Hui-Jin;Im, O-Duck;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.415-425
    • /
    • 2019
  • This study proposes a new approach to control Moving Stuff Action Through Iterative Learning robot with dual arm for smart factory. When robot moves object with dual arm, not only position of each hand but also contact force at surface of an object should be considered. However, it is not easy to determine every parameters for planning trajectory of the an object and grasping object concerning about variety compliant environment. On the other hand, human knows how to move an object gracefully by using eyes and feel of hands which means that robot could learn position and force from human demonstration so that robot can use learned task at variety case. This paper suggest a way how to learn dynamic equation which concern about both of position and path.