• Title/Summary/Keyword: Real time error correction

Search Result 181, Processing Time 0.028 seconds

Real Time Error Correction of Hydrologic Model Using Kalman Filter

  • Wang, Qiong;An, Shanfu;Chen, Guoxin;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1592-1596
    • /
    • 2007
  • Accuracy of flood forecasting is an important non-structural measure on the flood control and mitigation. Hence, combination of horologic model with real time error correction became an important issue. It is one of the efficient ways to improve the forecasting precision. In this work, an approach based on Kalman Filter (KF) is proposed to continuously revise state estimates to promote the accuracy of flood forecasting results. The case study refers to the Wi River in Korea, with the flood forecasting results of Xinanjiang model. Compared to the results, the corrected results based on the Kalman filter are more accurate. It proved that this method can take good effect on hydrologic forecasting of Wi River, Korea, although there are also flood peak discharge and flood reach time biases. The average determined coefficient and the peak discharge are quite improved, with the determined coefficient exceeding 0.95 for every year.

  • PDF

A study of error correction scheme using RTP for real-time transmission (Realtime 전송을 위해 RTP를 사용한 Error Correction Scheme 연구)

  • 박덕근;박원배
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.9-12
    • /
    • 2000
  • A forward error correction (FEC) is usually used to correct the errors of the real-time data occurred at the reciever side which require a real-time transmission. The data transmission is peformed after being encapsulating by RTP and UDP. In the ITU-T study group 16, four FEC schemes using the XORing are presented. In the paper, a new supplementary scheme is proposed. In the delay problem the new scheme performs better than the scheme 3 but in the recovery ability for successive packet loss is worse than scheme 3. The proposed scheme which supplements the present schemes can be adapted easily to the current network environment.

  • PDF

Research of Media-independent Error Correction Scheme (Media-independent Error Correction Scheme에 관한 연구)

  • 박덕근;박원배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.454-456
    • /
    • 2000
  • 실시간의 특성을 가지는 데이터의 경우 네트워크상에서 분실된 패킷을 복구시키기 위해서 FEC 방법을 사용한다. FEC는 최소한의 지연만으로 손실 패킷의 복구를 효율적으로 할 수 있는 장점을 가지고 있으나 네트워크상에서의 패킷 손실 특성에 많이 의존되는 경향이 있다. ITU-T의 Study Group 16 에서의 Real-Time Transport Protocol(RTP)를 사용하여 네트워크에서 분실된 패킷을 복원시키는 방법으로 Media-independent error-correction scheme을 정하였다. 이 Scheme에 의해 만들어진 error-correction을 위한 신호화 media bitstream은 UDP 에 의해 encapsulation될 RTP에 실리게 된다. Scheme은 real-time이라는 환경에 유리하도록 bandwidth 와 latency 그리고 cost를 최소화하려고 했으며 이에 따라 네 가지 scheme을 정하였다. 네 가지의 Scheme은 오버헤드와 지연시간이 크기가 차별화를 두어 네트워크 환경의 변화에 적응하도록 하였다. 그러나 네트워크 환경에 보다 더 탄력적이며 효율적으로 적응하기 위해서 또 하나의 scheme을 제안한다. 새로 고안한 이 다섯 번째 scheme은 scheme 3 에 비해 작은 latency를 가지고 장점이 있는 반면 연속적으로 분실된 패킷에 대한 복원확률이 다소 떨어진다. 하지만 scheme 1과 2에 비해서는 연속적인 패킷 분실의 복원확률이 높아 네트워크환경에 따라 scheme 4를 사용하면 네 개의 scheme을 사용하여 분실패킷의 복원을 하는 경우보다 보다 효율적인 전송과 복원이 이루어질 것이다.

  • PDF

Implementation and Performance Analysis of DGPS & RTK Error Correction Data Real-Time Transmission System for Long-Distance in Mobile Environments

  • Cho, Ik-Sung;Ha, Chang-Seung;Yim, Jae-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.291-291
    • /
    • 2002
  • DGPS(Differential Global Positioning System) and RTK(RealTime Kinematic) is in one of today's most widely used surveying techniques. But It's use is restricted by the distance between reference station and rover station and it is difficult to process data in realtime by it's own orgnizational limitation in precise measurement of positioning. To meet these new demands, In This paper, new DGPS and RTK correction data services through Internet and PSTN(Public Switched Telephony Network) have been proposed. For this purpose, we implemented performance a DGPS and RTK error correction data transmission system for long-distance using the internet and PSTN network which allows a mobile user to increase the distance at which the rover receiver is located from the reference in realtime. and we analyzed and compared DGPS and RTK performance by experiments through the Internet and PSTN network with the distance and the time.

  • PDF

Real-Time Correction of Movement Errors of Machine Axis by Twyman-Green Interferometry (광위상 간섭을 이용한 이송축의 운동오차 실시간 보상)

  • 이형석;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3115-3123
    • /
    • 1993
  • This paper presents a real-time correction method of the movemont errors of a translatory precision machine axis. This method is a null-balances technique in which two plane mirrors are used to generate an interferometric fringe pattern utilizing the optical principles of TwymanGreen interferometry. One mirror is fixed on a reference frame, while the other is placed on the machine axis being supported by three piezoelectric actuators. From the fringe pattern, one translatory and two rotational error components of the machine axis are simultaneously detected by using CCD camera vision and image processing techniques. These errors are then independently suppressed by activating the peizoelectric actuators by real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with movement errors less than 10 nm in vertical straightness, 0.1 arcsec in pitch, and 0.06 arcsec in roll for 50mm travel by adopting the real-time correction method.

Error Correction of Real-time Situation Recognition using Smart Device (스마트 기기를 이용한 실시간 상황인식의 오차 보정)

  • Kim, Tae Ho;Suh, Dong Hyeok;Yoon, Shin Sook;Ryu, KeunHo
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1779-1785
    • /
    • 2018
  • In this paper, we propose an error correction method to improve the accuracy of human activity recognition using sensor event data obtained by smart devices such as wearable and smartphone. In the context awareness through the smart device, errors inevitably occur in sensing the necessary context information due to the characteristics of the device, which degrades the prediction performance. In order to solve this problem, we apply Kalman filter's error correction algorithm to compensate the signal values obtained from 3-axis acceleration sensor of smart device. As a result, it was possible to effectively eliminate the error generated in the process of the data which is detected and reported by the 3-axis acceleration sensor constituting the time series data through the Kalman filter. It is expected that this research will improve the performance of the real-time context-aware system to be developed in the future.

A Study on Determinants of Asset Price : Focused on USA (자산가격의 결정요인에 대한 실증분석 : 미국사례를 중심으로)

  • Park, Hyoung-Kyoo;Jeong, Dong-Bin
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.5
    • /
    • pp.63-72
    • /
    • 2018
  • Purpose - This work analyzes, in detail, the specification of vector error correction model (VECM) and thus examines the relationships and impact among seven economic variables for USA - balance on current account (BCA), index of stock (STOCK), gross domestic product (GDP), housing price indices (HOUSING), a measure of the money supply that includes total currency as well as large time deposits, institutional money market funds, short-term repurchase agreements and other larger liquid assets (M3), real rate of interest (IR_REAL) and household credits (LOAN). In particular, we search for the main explanatory variables that have an effect on stock and real estate market, respectively and investigate the causal and dynamic associations between them. Research design, data, and methodology - We perform the time series vector error correction model to infer the dynamic relationships among seven variables above. This work employs the conventional augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root techniques to test for stationarity among seven variables under consideration, and Johansen cointegration test to specify the order or the number of cointegration relationship. Granger causality test is exploited to inspect for causal relationship and, at the same time, impulse response function and variance decomposition analysis are checked for both short-run and long-run association among the seven variables by EViews 9.0. The underlying model was analyzed by using 108 realizations from Q1 1990 to Q4 2016 for USA. Results - The results show that all the seven variables for USA have one unit root and they are cointegrated with at most five and three cointegrating equation for USA. The vector error correction model expresses a long-run relationship among variables. Both IR_REAL and M3 may influence real estate market, and GDP does stock market in USA. On the other hand, GDP, IR_REAL, M3, STOCK and LOAN may be considered as causal factors to affect real estate market. Conclusions - The findings indicate that both stock market and real estate market can be modelled as vector error correction specification for USA. In addition, we can detect causal relationships among variables and compare dynamic differences between countries in terms of stock market and real estate market.

An Analysis on the Real-Time Performance of the IGS RTS and Ultra-Rapid Products (IGS RTS와 Ultra Rapid 실시간 성능 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • For real-time precise positioning, IGS provides ephemeris predictions (IGS ultra-rapid, IGU) and real-time ephemeris estimates (real-time service, RTS). Due to the RTS data latency, which ranges from 5 s to 30 s, a short-term prediction process is necessary before applying the RTS corrections. In this paper, the real-time performance of the RTS correction and IGU prediction are compared. The RTS correction availability for the GPS satellites observed in Korea is computed as 99.3%. The RTS correction is applied to broadcast ephemeris to verify the accuracy of the RTS correction. The 3D orbit RMS error of the RTS correction is 0.043 m. Prediction of the RTS correction is modeled as a polynomial, and then the predicted value is compared with the IGU prediction value. The RTS orbit prediction accuracy is nearly equivalent to the IGU prediction, but RTS clock prediction performance is 0.13 m better than the IGU prediction.

Implementation and Performance Analysis of Real-Time DGPS & RTK Error Correction Data Transmission System for Long-Distance in Mobile Environments (모바일 환경에서 DGPS 및 RTK 보정 데이터 실시간 장거리 전송 시스템의 구현 및 성능 분석)

  • 조익성;임재홍
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.345-358
    • /
    • 2002
  • DGPS(Differential Global Positioning System) and RTK(Real time Kinematic) are in one of today's most widely used surveying techniques. However surveying with these techniques is restricted by the distance between reference and rover station, and it is difficult to process data in realtime by their own organizational limitation in precise measurement of positioning. To meet these new demands, in this paper, new DGPS and RTK correction data services through the Internet and PSTN(Public Switched Telephony Network) have been proposed. For this purpose, a DGPS and RTK error correction data transmission system is implemented for long-distance using the Internet and PSTN which allows a mobile user at which the rover receiver is located to receive the correction data from the reference in realtime, and analyzed and compared with DGPS and RTK performances by experiments through the Internet and PSTN for the distance and the time.

Development of Calibration and Real-Time Compensation System for Total Measuring Accuracy in a Commercial CMM (상용 3차원 측정기의 전체 측정정밀도 교정 및 실시간 보정시스템)

  • 박희재;김종후
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2358-2367
    • /
    • 1994
  • This paper presents techniques for evaluation and compensation of total measuring errors in a commercial CMM. The probe errors as well as the machine geometric errors are assessed from probing of the mechanical artefacts such as shpere, step, and rings. For the error compensation, the integrated volumetric error equations are considered, including the probe error adn the machine geometric error. The error compensation is performed on the absolute scale coordinate system, in order to overcome the redundant degree of freedom in the CMM with multi-axis probe. A interface box and corresponding software driver are developed for data intercepting/correction between the machine controller and machine, thus the volumetric errors can be compensated in real time with minimum interference to the operating software and hardware of a commercial CMM. The developed system applied to a practical CMM installed on the shop floor, and demonstrated its performance.