• Title/Summary/Keyword: Real time computation

Search Result 852, Processing Time 0.022 seconds

Design and Implementation of an Execution-Provenance Based Simulation Data Management Framework for Computational Science Engineering Simulation Platform (계산과학공학 플랫폼을 위한 실행-이력 기반의 시뮬레이션 데이터 관리 프레임워크 설계 및 구현)

  • Ma, Jin;Lee, Sik;Cho, Kum-won;Suh, Young-kyoon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2018
  • For the past few years, KISTI has been servicing an online simulation execution platform, called EDISON, allowing users to conduct simulations on various scientific applications supplied by diverse computational science and engineering disciplines. Typically, these simulations accompany large-scale computation and accordingly produce a huge volume of output data. One critical issue arising when conducting those simulations on an online platform stems from the fact that a number of users simultaneously submit to the platform their simulation requests (or jobs) with the same (or almost unchanging) input parameters or files, resulting in charging a significant burden on the platform. In other words, the same computing jobs lead to duplicate consumption computing and storage resources at an undesirably fast pace. To overcome excessive resource usage by such identical simulation requests, in this paper we introduce a novel framework, called IceSheet, to efficiently manage simulation data based on execution metadata, that is, provenance. The IceSheet framework captures and stores each provenance associated with a conducted simulation. The collected provenance records are utilized for not only inspecting duplicate simulation requests but also performing search on existing simulation results via an open-source search engine, ElasticSearch. In particular, this paper elaborates on the core components in the IceSheet framework to support the search and reuse on the stored simulation results. We implemented as prototype the proposed framework using the engine in conjunction with the online simulation execution platform. Our evaluation of the framework was performed on the real simulation execution-provenance records collected on the platform. Once the prototyped IceSheet framework fully functions with the platform, users can quickly search for past parameter values entered into desired simulation software and receive existing results on the same input parameter values on the software if any. Therefore, we expect that the proposed framework contributes to eliminating duplicate resource consumption and significantly reducing execution time on the same requests as previously-executed simulations.

A Study on Design of Agent based Nursing Records System in Attending System (에이전트기반 개방병원 간호기록시스템 설계에 관한 연구)

  • Kim, Kyoung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.73-94
    • /
    • 2010
  • The attending system is a medical system that allows doctors in clinics to use the extra equipment in hospitals-beds, laboratory, operating room, etc-for their patient's care under a contract between the doctors and hospitals. Therefore, the system is very beneficial in terms of the efficiency of the usage of medical resources. However, it is necessary to develop a strong support system to strengthen its weaknesses and supplement its merits. If doctors use hospital beds under the attending system of hospitals, they would be able to check a patient's condition often and provide them with nursing care services. However, the current attending system lacks delivery and assistance support. Thus, for the successful performance of the attending system, a networking system should be developed to facilitate communication between the doctors and nurses. In particular, the nursing records in the attending system could help doctors monitor the patient's condition and provision of nursing care services. A nursing record is the formal documentation associated with nursing care. It is merely a data repository that helps nurses to track their activities; nursing records thus represent a resource of primary information that can be reused. In order to maximize their usefulness, nursing records have been introduced as part of computerized patient records. However, nursing records are internal data that are not disclosed by hospitals. Moreover, the lack of standardization of the record list makes it difficult to share nursing records. Under the attending system, nurses would want to minimize the amount of effort they have to put in for the maintenance of additional records. Hence, they would try to maintain the current level of nursing records in the form of record lists and record attributes, while doctors would require more detailed and real-time information about their patients in order to monitor their condition. Therefore, this study developed a system for assisting in the maintenance and sharing of the nursing records under the attending system. In contrast to previous research on the functionality of computer-based nursing records, we have emphasized the practical usefulness of nursing records from the viewpoint of the actual implementation of the attending system. We suggested that nurses could design a nursing record dictionary for their convenience, and that doctors and nurses could confirm the definitions that they looked up in the dictionary through negotiations with intelligent agents. Such an agent-based system could facilitate networking among medical institutes. Multi-agent systems are a widely accepted paradigm for the distribution and sharing of computation workloads in the scientific community. Agent-based systems have been developed with differences in functional cooperation, coordination, and negotiation. To increase such communication, a framework for a multi-agent based system is proposed in this study. The agent-based approach is useful for developing a system that promotes trade-offs between transactions involving multiple attributes. A brief summary of our contributions follows. First, we propose an efficient and accurate utility representation and acquisition mechanism based on a preference scale while minimizing user interactions with the agent. Trade-offs between various transaction attributes can also be easily computed. Second, by providing a multi-attribute negotiation framework based on the attribute utility evaluation mechanism, we allow both the doctors in charge and nurses to negotiate over various transaction attributes in the nursing record lists that are defined by the latter. Third, we have designed the architecture of the nursing record management server and a system of agents that provides support to the doctors and nurses with regard to the framework and mechanisms proposed above. A formal protocol has also been developed to create and control the communication required for negotiations. We verified the realization of the system by developing a web-based prototype. The system was implemented using ASP and IIS5.1.