• Title/Summary/Keyword: Real time 3D imaging

Search Result 102, Processing Time 0.029 seconds

The use of augmented reality navigation technology in combination with endoscopic surgery for the treatment of an odontogenic cyst of the upper jaw: A technical report

  • Lysenko, Anna;Razumova, Alexandra;Yaremenko, Andrey;Ivanov, Vladimir;Strelkov, Sergey;Krivtsov, Anton
    • Imaging Science in Dentistry
    • /
    • v.52 no.2
    • /
    • pp.225-230
    • /
    • 2022
  • Purpose: This report presents the first known use of a rigid endoscope with augmented reality technology for the removal of an odontogenic cyst that penetrated the maxillary sinus and illustrates its practical use in a patient. Materials and Methods: In the preoperative period, cone-beam computed tomography was performed in a specially designed marker holder frame, and the contours of the cyst and the nearest anatomical formations were segmented in the 3D Slicer program. During the operation, a marker was installed on the patient's head, as well as on the tip of the endoscope, which made it possible to visualize the mass and the movement of the endoscope. The surgical intervention was performed with the support of augmented reality in HoloLens glasses (Microsoft Corporation, Redmond, WA, USA). Results: The use of this technology improved the accuracy of surgical manipulations, reduced operational risks, and shortened the time of surgery and the rehabilitation period. Conclusion: With the help of modern technologies, a navigation system was created that helped to track the position of the endoscope in mixed reality in real time, as well as to fully visualize anatomical formations.

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain

  • Lee, Sang-Won;Song, Hyun-Woo;Kim, Bong-Kyu;Jung, Moon-Youn;Kim, Seung-Hwan;Cho, Jae-Du;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • In this study, we demonstrated Fourier-domain/swept-source optical coherence tomography (FD/SS-OCT) at a center wavelength of 800 nm for in vivo human retinal imaging. A wavelength-swept source was constructed with a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, isolators, and a fiber coupler in a ring cavity. Our swept source produced a laser output with a tuning range of 42 nm (779 to 821 nm) and an average power of 3.9 mW. The wavelength-swept speed in this configuration with bidirectionality is 2,000 axial scans per second. In addition, we suggested a modified zero-crossing method to achieve equal sample spacing in the wavenumber (k) domain and to increase the image depth range. FD/SS-OCT has a sensitivity of ~89.7 dB and an axial resolution of 10.4 ${\mu}m$ in air. When a retinal image with 2,000 A-lines/frame is obtained, an acquisition speed of 2.0 fps is achieved.

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

A Study on Effect of Various Cooling Methods in Motion of High-Precision Ball Screw (고속 고정밀 볼 스크류 구동에 따른 강제 냉각방식의 효과에 관한 연구)

  • Kim, Su-Sang;Xu, Zhe-Zhu;Kim, Hyun-Koo;Lyu, Sung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.254-259
    • /
    • 2013
  • Ball screw system is widely used as a precision mechanical linear actuator that translates rotational motion to linear motion for its high efficiency, great stiffness and long life. Recently, according to the requirements of high accuracy and stiffness, the pre-load on the ball screw which means of remove the backlash in the ball screw is usually used. Because of the preload which means the frictional resistance between the screw and nut, becomes a dominating heat source and it generates thermal deformation of ball screw which is the reason for low accuracy of the positioning decision. There are several methods to solve the problem that includes temperature control, thermal stable design and error compensation. In the past years, researchers focused on the error compensation technique for its ability to correct ball screw error effectively rather than the capabilities of careful machine design and manufacturing. Significant amounts of researches have been done to real-time error compensation. But in this paper, we developed a series of cooling methods to get thermal equilibrium in the ball screw system. So we find the optimum cooling type for improving positioning error which caused by thermal deformation in the ball screw system.

Preliminary Study on the Enhancement of Reconstruction Speed for Emission Computed Tomography Using Parallel Processing (병렬 연산을 이용한 방출 단층 영상의 재구성 속도향상 기초연구)

  • Park, Min-Jae;Lee, Jae-Sung;Kim, Soo-Mee;Kang, Ji-Yeon;Lee, Dong-Soo;Park, Kwang-Suk
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.443-450
    • /
    • 2009
  • Purpose: Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. Materials and Methods: The preliminary tests for the possibility on virtual manchines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Results: Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Conclusion: Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify.

Color Enhancement of Low Exposure Images using Histogram Specification and its Application to Color Shift Model-Based Refocusing

  • Lee, Eunsung;Kang, Wonseok;Kim, Sangjin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2012
  • An image obtained from a low light environment results in a low-exposure problem caused by non-ideal camera settings, i.e. aperture size and shutter speed. Of particular note, the multiple color-filter aperture (MCA) system inherently suffers from low-exposure problems and performance degradation in its image classification and registration processes due to its finite size of the apertures. In this context, this paper presents a novel method for the color enhancement of low-exposure images and its application to color shift model-based MCA system for image refocusing. Although various histogram equalization (HE) approaches have been proposed, they tend to distort the color information of the processed image due to the range limits of the histogram. The proposed color enhancement algorithm enhances the global brightness by analyzing the basic cause of the low-exposure phenomenon, and then compensates for the contrast degradation artifacts by using an adaptive histogram specification. We also apply the proposed algorithm to the preprocessing step of the refocusing technique in the MCA system to enhance the color image. The experimental results confirm that the proposed method can enhance the contrast of any low-exposure color image acquired by a conventional camera, and is suitable for commercial low-cost, high-quality imaging devices, such as consumer-grade camcorders, real-time 3D reconstruction systems, digital, and computational cameras.

  • PDF

3D Facial Scanners: How to Make the Right Choice for Orthodontists

  • Young-Soo Seo;Do-Gil Kim;Gye-Hyeong Lee;Kyungmin Clara Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • With the advances of digital scanning technology in dentistry, the interests in facial scanning in orthodontics have increased. There are many different manufacturers of facial scanners marketing to the dental practice. How do you know which one will work best for you? What questions should you be asking? We suggest a clinical guideline which may help you make an informed decision when choosing facial scanners. The characteristics of 7 facial scanners were discussed in this article. Here are some considerations for choosing a facial scanner. *Accuracy: For facial scanners to be of real value, having an appropriate camera resolution is necessary to achieve more accurate facial image representation. For orthodontic application, the scanner must create an accurate representation of an entire face. *Ease of Use: Scanner-related issues that impact their ease of use include type of light; scan type; scan time; file type generated by the scanner; unit size and foot print; and acceptance of scans by third-party providers. *Cost: Most of the expenses associated with facial scanning involve the fixed cost of purchase and maintenance. Other expenses include technical support, warranty costs, transmission fees, and supply costs. This article suggests a clinical guideline to make the right choice for facial scanner in orthodontics.

A Study of Guide System for Cerebrovascular Intervention (뇌혈관 중재시술 지원 가이드 시스템에 관한 연구)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Yoon, Kwon-Ha;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.101-107
    • /
    • 2016
  • Due to the recent advancement in digital imaging technology, development of intervention equipment has become generalize. Video arbitration procedure is a process to insert a tiny catheter and a guide wire in the body, so in order to enhance the effectiveness and safety of this treatment, the high-quality of x-ray of image should be used. However, the increasing of radiation has become the problem. Therefore, the studies to improve the performance of x-ray detectors are being actively processed. Moreover, this intervention is based on the reference of the angiographic imaging and 3D medical image processing. In this paper, we propose a guidance system to support this intervention. Through this intervention, it can solve the problem of the existing 2D medical images based vessel that has a formation of cerebrovascular disease, and guide the real-time tracking and optimal route to the target lesion by intervention catheter and guide wire tool. As a result, the system was completely composed for medical image acquisition unit and image processing unit as well as a display device. The experimental environment, guide services which are provided by the proposed system Brain Phantom (complete intracranial model with aneurysms, ref H+N-S-A-010) was taken with x-ray and testing. To generate a reference image based on the Laplacian algorithm for the image processing which derived from the cerebral blood vessel model was applied to DICOM by Volume ray casting technique. $A^*$ algorithm was used to provide the catheter with a guide wire tracking path. Finally, the result does show the location of the catheter and guide wire providing in the proposed system especially, it is expected to provide a useful guide for future intervention service.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.