• Title/Summary/Keyword: Real scale

Search Result 2,307, Processing Time 0.027 seconds

Verification of Real-time Hybrid Test System using RC Pier Model (RC교각을 이용한 실시간 하이브리드 실험 시스템의 적용성 연구)

  • Lee, Jinhaeng;Park, Minseok;Chae, Yunbyeong;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.253-259
    • /
    • 2018
  • Structure behaviors resulting from an earthquake are experimentally simulated mainly through a shaking table test. As for large-scale structures, however, size effects over a miniature may make it difficult to assess actual behaviors properly. To address this problem, research on the hybrid simulation is being conducted actively. This method is to implement numerical analysis on framework members that affect the general behavior of the structure dominantly through an actual scale experiment and on the rest parts by applying the substructuring technique. However, existing studies on hybrid simulation focus mainly on Slow experimental methods, which are disadvantageous in that it is unable to assess behaviors close to the actual level if material properties change depending on the speed or the influence of inertial force is significant. The present study aims to establish a Real-time hybrid simulation system capable of excitation based on the actual time history and to verify its performance and applicability. The hybrid simulation system built up in this study utilizes the ATS Compensator system, CR integrator, etc. in order to make the target displacement the same with the measured displacement on the basis of MATLAB/Simulink. The target structure was a 2-span bridge and an RC pier to support it was produced as an experimental model in order for the shaking table test and Slow and Real-time hybrid simulations. Behaviors that result from the earthquake of El Centro were examined, and the results were analyzed comparatively. In comparison with the results of the shaking table test, the Real-time hybrid simulation produced more similar maximum displacement and vibration behaviors than the Slow hybrid simulation. Hence, it is thought that the Real-time hybrid simulation proposed in this study can be utilized usefully in seismic capacity assessment of structural systems such as RC pier that are highly non-linear and time-dependent.

A Study on the Reduction of LSP(Line Spectrum Pair) Transformation Time in Speech Coder for CDMA Digital Cellular System (이동통신용 음성부호화기에서의 LSP 계산시간 감소에 관한 연구)

  • Min, So-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.563-568
    • /
    • 2007
  • We propose the computation reduction method of real root method that is used in the EVRC(Enhanced Variable Rate Codec) system. The real root method is that if polynomial equations have the real roots, we are able to find those and transform them into LSP. However, this method takes much time to compute, because the root searching is processed sequentially in frequency region. But, the important characteristic of LSP is that most of coefficients are occurred in specific frequency region. So, to reduce the computation time of real root, we used the met scale that is linear below 1kHz and logarithmic above. In order to compare real root method with proposed method, we measured the following two. First, we compared the position of transformed LSP(Line Spectrum Pairs) parameters in the proposed method with these of real root method. Second, we measured how long computation time is reduced. The experimental result is that the searching time was reduced by about 48% in average without the change of LSP parameters.

  • PDF

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Wind Tunnel Test for Scaled Wind Turbine Model (Scale effect correction) (축소형 풍력터빈 풍동시험-축소효과 보상기법)

  • Cho, Tae-Hwan;Kim, Yang-Won;Park, Young-Min;Chang, Byeong-Hee
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • Wind tunnel test for the 12% scaled model of NREL Phase VI wind turbine was conducted in KARI low speed wind tunnel for $2006{\sim}2007$. The 1st and 2nd test was designed to find out the wind tunnel test method for the blade manufacturing accuracy and surface treatment method by using the composite and aluminum blades. And the 3rd test was designed to study the scale effect. The chord extension method which was used for Bo-105 40% scaled model was adapted for scale effect correction. Test results shows that the chord extension method works well for the torque slope but the maximum torque for scaled model is about 8% below than the real scale model. New correction method to correct this offset was proposed.

  • PDF

CHANGE OF SCALE FORMULAS FOR CONDITIONAL WIENER INTEGRALS AS INTEGRAL TRANSFORMS OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • Cho, Dong-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.91-109
    • /
    • 2007
  • In this paper, we derive a change of scale formula for conditional Wiener integrals, as integral transforms, of possibly unbounded functions over Wiener paths in abstract Wiener space. In fact, we derive the change of scale formula for the product of the functions in a Banach algebra which is equivalent to both the Fresnel class and the space of measures of bounded variation over a real separable Hilbert space, and the $L_p-type$cylinder functions over Wiener paths in abstract Wiener space. As an application of the result, we obtain a change of scale formula for the conditional analytic Fourier-Feynman transform of the product of the functions.

An Dredging Depth Calculation of a Pile Under Lateral Loading Based on Model Test (모형실험을 통한 횡하중을 받는 말뚝의 준설깊이 산정)

  • Yoo, Chan-Ho;Lee, Jung-Jae;Kim, Seung-Wook;Chung, Jong-Min;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1094-1103
    • /
    • 2010
  • The safety of pile foundation is getting declined when the pile foundation acting on lateral load is exposed by dredging. So appropriate reinforcement is needed for stability secure. Thus, in this study, the stability variation and reinforcement range caused by dredging is estimated on the basis of down scale test. The scale effect is determined by real scale numerical analysis. the behavior of pile by dredging stages is estimated by load control type. The credibility is verified through the comparison between down scale model test and numerical analysis.

  • PDF

A Tone Mapping Algorithm Based on Multi-scale Decomposition

  • Li, Weizhong;Yi, Benshun;Huang, Taiqi;Yao, Weiqing;Peng, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1846-1863
    • /
    • 2016
  • High dynamic range (HDR) images can present the perfect real scene and rich color information. A commonly encountered problem in practical applications is how to well visualize HDR images on standard display devices. In this paper, we propose a multi-scale decomposition method using guided filtering for HDR image tone mapping. In our algorithm, HDR images are directly decomposed into three layers:base layer, coarse scale detail layer and fine detail layer. We propose an effective function to compress the base layer and the coarse scale detail layer. An adaptive function is also proposed for detail adjustment. Experimental results show that the proposed algorithm effectively accomplishes dynamic range compression and maintains good global contrast as well as local contrast. It also presents more image details and keeps high color saturation.

Remote Calibration Control and Monitoring System for Conveyor Scale using LabVIEW (LabVIEW를 이용한 Conveyor Scale의 원격 교정제어 및 모니터링 시스템)

  • Bang, Nam-Soo;Jang, Woo-Jin;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.72-80
    • /
    • 2012
  • In general, electronic conveyor scales are installed in a relatively distributed manner on the crushed rock and sand production site. It is one of the time-consuming and difficult engineering works to monitor and control the plant operation status such as the management of measuring data, malfunction of belt conveyor, and fault of electronic conveyor scale. Therefore, to alleviate the inefficient problems and to monitor the operating plant in the online and remote control room, a remote calibration and real-time monitoring system, which is practically applied to the electronic conveyor scale system and verified by onsite experiment, is developed based on the LabVIEW.

Nonparametric two sample tests for scale parameters of multivariate distributions

  • Chavan, Atul R;Shirke, Digambar T
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.397-412
    • /
    • 2020
  • In this paper, a notion of data depth is used to propose nonparametric multivariate two sample tests for difference between scale parameters. Data depth can be used to measure the centrality or outlying-ness of the multivariate data point relative to data cloud. A difference in the scale parameters indicates the difference in the depth values of a multivariate data point. By observing this fact on a depth vs depth plot (DD-plot), we propose nonparametric multivariate two sample tests for scale parameters of multivariate distributions. The p-values of these proposed tests are obtained by using Fisher's permutation approach. The power performance of these proposed tests has been reported for few symmetric and skewed multivariate distributions with the existing tests. Illustration with real-life data is also provided.

Implementation of a Weather Hazard Warning System at a Catchment Scale (시스템 구성요소 통합 및 현업서비스 구축)

  • Shin, Yong Soon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.74-85
    • /
    • 2014
  • This study is a part of "Early Warning Service for Weather Risk Management in Climate-smart Agriculture", describes the delivery techniques from 840 catchment scale weather warning information using 150 counties unit special weather report(alarm, warning) released from KMA(Korea Meteorological Administration) and chronic weather warning information based on daily weather data from 76 synoptic stations. Catchment weather hazard warning service express a sequential risk index map generated by countries report occurs and report grade(alarm, warning) convert to catchment scale using zonal summarizing method. Additional services were chronic weather warning service at crop growth and accumulated more than 4 weeks, based on an unsuitable weather conditions, representing a relative risk compared to its catchment climatological normal conditions (normal distribution ) in addition to special weather report. Service provided by a real-time catchment scale map overlaid with VWORLD open platform operated by Ministry of Land, Infrastructure and Transport. Also provide a foundation for weather risk information to inform individual farmers to farm located within the catchment zone warning occur.

  • PDF