• Title/Summary/Keyword: Real grid

Search Result 711, Processing Time 0.03 seconds

Smart meter data transmission device and power IT system using LTE and IoT technologies (LTE와 IoT 기술을 이용한 스마트미터 데이터 전송장치와 전력 IT 시스템)

  • Kang, Ki-Beom;Kim, Hong-Su;Jwa, Jeong-Woo;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.117-124
    • /
    • 2017
  • A Smart Grid is a system that can efficiently use energy by exchanging real-time information in both directions between a consumer and a power supplier using ICT technology on an existing power network. DR(Demand response) is an arrangement in which electricity users can sell the electricity they save to the electricity market when the price of electricity is high or the power system is crisis. In this study, we developed a power meter data transmission device and power IT system that measure the demand information in real-time using a smart meter and transmit it to a cloud server. The power meter data transmission device developed in this study uses alight sensor connected to a Raspberry Pi 3 to measure the number of blinking lamps on the KEPCO meter per unit of power, in order to provide reliable data without any measurement errors with respect to the KEPCO power data. The power measurement data transmission device uses the standard communication protocol, OpenADR 2.0b. The measured data is transmitted to the power IT system, which consists of the VEN, VTN, and calculation program, via the LTE WiFi communication network and stored in its MySQL DB. The developed power measurement data transmission device issues a power supply instruction and performs a peak reduction DR when a power system crisis occurs. The developed power meter data transmission device has the advantage of allowing the user to adjust it every 1 minute, where as the existing smart metering time is fixed at once every 15 minutes.

Analyzing Spatial Correlation between Location-Based Social Media Data and Real Estates Price Index through Rasterization (격자기반 분석을 통한 위치기반 소셜 미디어 데이터와 부동산 가격지수 간의 공간적 상관성 분석 연구)

  • Park, Woo Jin;Eo, Seung Won;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • In this study, the spatial relevance between the regional housing price data and the spatial distribution of the location-based social media data is explored. The spatial analysis with rasterization was applied to this study, because the both data have a different form to analyze. The geo-tagged Twitter data had been collected for a month and the regional housing price index about sales and lease were used. The spatial range of both data includes Seoul and the some parts of the metropolitan area. 2,000m grid was constructed to consider the different spatial measure between two data, and they were combined into the constructed grids. The Hotspot Analysis was operated using the combined dataset to see the comparison of spatial distribution, and the bivariate spatial correlation coefficients between two data were measured for the quantitative analysis. The result of this study shows that Seocho-gu area is detected as a common hotspot of tweet and housing sales price index data. though the spatial relevance is not detected between tweet and housing lease price index data.

A SVR Based-Pseudo Modified Einstein Procedure Incorporating H-ADCP Model for Real-Time Total Sediment Discharge Monitoring (실시간 총유사량 모니터링을 위한 H-ADCP 연계 수정 아인슈타인 방법의 의사 SVR 모형)

  • Noh, Hyoseob;Son, Geunsoo;Kim, Dongsu;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.321-335
    • /
    • 2023
  • Monitoring sediment loads in natural rivers is the key process in river engineering, but it is costly and dangerous. In practice, suspended loads are directly measured, and total loads, which is a summation of suspended loads and bed loads, are estimated. This study proposes a real-time sediment discharge monitoring system using the horizontal acoustic Doppler current profiler (H-ADCP) and support vector regression (SVR). The proposed system is comprised of the SVR model for suspended sediment concentration (SVR-SSC) and for total loads (SVR-QTL), respectively. SVR-SSC estimates SSC and SVR-QTL mimics the modified Einstein procedure. The grid search with K-fold cross validation (Grid-CV) and the recursive feature elimination (RFE) were employed to determine SVR's hyperparameters and input variables. The two SVR models showed reasonable cross-validation scores (R2) with 0.885 (SVR-SSC) and 0.860 (SVR-QTL). During the time-series sediment load monitoring period, we successfully detected various sediment transport phenomena in natural streams, such as hysteresis loops and sensitive sediment fluctuations. The newly proposed sediment monitoring system depends only on the gauged features by H-ADCP without additional assumptions in hydraulic variables (e.g., friction slope and suspended sediment size distribution). This method can be applied to any ADCP-installed discharge monitoring station economically and is expected to enhance temporal resolution in sediment monitoring.

Design of Web-GIS based SWG Simulator for Disseminating Integrated Water Information (통합 물정보 제공을 위한 웹 GIS 기반의 SWG 시뮬레이터 설계)

  • Park, Yonggil;Kim, Kyehyun;Lee, Sungjoo;Yoo, Jaehyun
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.19-31
    • /
    • 2015
  • Due to the global warming and unstable abnormal climate changes, water resources differences between regions and water shortage are occurring. Therefore, the water resources management is becoming more important for the stable securement of future water supply and demand. Researches on Smart Water Grid (SWG), which is considered as a new method, that can stably secure and maintain the water resources, are actively being conducted but it is still in infancy. Thus, this study aimed to design SWG simulator based on GIS in order to provide integrated water information in web environment. The user's requirements were analyzed for system development and important functions such as SWG current situation checking, future prediction, filtration plant situation checking functions were designed and data expression techniques using GIS and HTML5 were applied to enhance the understanding of the users. Also, when the emergency situations occurred, the solving process of the situations are reproduced to check the solution process using scenario reproduction functions. Use-case, class, sequence diagram, which are a design for real system development and defines the system usage contents of users, were written, and the story board was written to check the final development contents. This study designed a SWG simulator in order to support the water maintenance reacting to climate changes. The development of system is expected to help securing information to deal with emergency situations such as water shortage and help the decision maker to make decision through reproduction of scenario. The major functions were designed for the convenience of water resource manager and producer but new contents for consumers must be developed to enable duplex information transmission.

Flood Runoff Simulation using Radar Rainfall and Distributed Hydrologic Model in Un-Gauged Basin : Imjin River Basin (레이더 강우와 분포형 수문모형을 이용한 미계측 유역의 홍수 유출모의: 임진강 유역)

  • Kim, Byung-Sik;Bae, Young-Hye;Park, Jung-Sool;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.52-67
    • /
    • 2008
  • Recently, frequent occurrence of flash floods caused by climactic change has necessitated prompt and quantitative prediction of precipitation. In particular, the usability of rainfall radar that can carry out real-time observation and prediction of precipitation behavior has increased. Moreover, the use of distributed hydrological model that enables grid level analysis has increased for an efficient use of rainfall radar that provides grid data at 1km resolution. The use of distributed hydrologic model necessitates grid-type spatial data about target basins; to enhance reliability of flood runoff simulation, the use of visible and precise data is necessary. In this paper, physically based $Vflo^{TM}$ model and ModClark, a quasi-distributed hydrological model, were used to carry out flood runoff simulation and comparison of simulation results with data from Imjin River Basin, two-third of which is ungauged. The spatial scope of this study was divided into the whole Imjin River basin area, which includes ungauged area, and Imjin River basin area in South Korea for which relatively accurate and visible data are available. Peak flow and lag time outputs from the two simulations of each region were compared to analyze the impact of uncertainty in topographical parameters and soil parameters on flood runoff simulation and to propose effective methods for flood runoff simulation in ungauged regions.

  • PDF

GIS-Based Suitability Assessment Plan of Coastal Zoning System (GIS 기반 연안 용도해역 적성평가 방안)

  • Lee, Geun-Sang;Lim, Seung-Hyeon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.75-87
    • /
    • 2013
  • This study developed a GIS-based suitability assessment model of coastal zoning system that is needed in the substantial classification of coastal zoning system according to the establishment of law about coastal zoning system. First, this study investigated several kinds of regulations, GIS database and application system related coastal area. Also, grid data model was selected as the GIS analytical model for calculating items of suitability assessment of coastal zoning system. And Grid-based analytical method was suggested for calculating items composing of sea and spatial location characteristics including physical one. Critical values of items were presented using standards that were suggested in coastal regulations and land suitability assessment. Especially, this study presented a calculation method of continuous pattern as fuzzy set function for reflecting the characteristics of GIS data. And this study classified the suitability grade using Z-score and developed model designating coastal zone as conservation management priority, utilization management priority, and planning management priority. This study is judged that very efficient business performance is possible if we consider the spatial coverage of study area and GIS database when the suitability assessment model of coastal zoning system that is suggested in this study, is applied to business works.

A Proposal of USN-based DER(Decentralized Energy Resources) Management System (USN 기반의 댁내 분산 전력 관리 시스템 제안)

  • Kim, Bo-Min;Kim, Jeong-Young;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.871-874
    • /
    • 2010
  • Needs for Smart Grid development are increasing all over the world as a solution to its problem according to depletion of energy resources, climatic and environmental rapidly change and growing demand for electrical power. Especially decentralized power is attracting world's attention. In this mood a new era for a unit scale of decentralized power environment is on its way in building. However there is a problem to have to be solved in the uniformity of power quality because the amount of power generated from renewable energy resources such as wind power and solar light is very sensitive to climate fluctuation. And thus this paper tries to suggest an energy management method on basis of real time monitoring for meteorological data. In the current situation of lacking in USN-based killer application in Smart Grid field, this paper proposes the USN-based DER management system which collects the meteorological data and control power system througout utilizing wireless sensor network technique this business. This communication technique is regarded to be efficient in aspects of installation cost and tits maintenance cost. The proposed EMS model embodies the method for predicting the power generation by monitoring and analyzing the climatic data and controling the efficient power distribution between the renewable energy and the existing power. The ultimate goal of this paper is to provide the technological basis for achieving zero-energy house.

  • PDF

Development of LoRa IoT Automatic Meter Reading and Meter Data Management System for Smart Water Grid (스마트워터그리드를 위한 LoRa IoT 원격검침 및 계량데이터 시스템 개발)

  • Park, Jeong-won;Park, Jae-sam
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • In this paper, water meter AMR(automatic meter reading), one of the core technologies of smart water grid, using LoRa IoT network is studied. The main content of the research is to develop the network system and show the test results that one PC server receives the readings of water meters from multiple households through LoRa communication and stores them in the database, and at the same time sends the data to the web server database through internet. The system also allows users to monitor the meter readings using their smartphones. The hardware and firmware of the main board of the digital water meter are developed. For a PC server program, MDMS(meter data management system) is developed using Visual C#. The app program running on the user's smartphone is also developed using Android Studio. By connecting each developed parts, the total network system is mounted on a flow test bench in the laboratory and tested. For the fields test, 5 places around the university are selected and the transmission distances are tested. The test result show that the developed system can be applied into the real field. The developed system can be expanded to various social safety nets such as monitoring the living alone or elderly with dementia.

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: 2. Refining the Distribution of Precipitation Amount (기상청 동네예보의 영농활용도 증진을 위한 방안: 2. 강수량 분포 상세화)

  • Kim, Dae-Jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • The purpose of this study is to find a scheme to scale down the KMA (Korea Meteorological Administration) digital precipitation maps to the grid cell resolution comparable to the rural landscape scale in Korea. As a result, we suggest two steps procedure called RATER (Radar Assisted Topography and Elevation Revision) based on both radar echo data and a mountain precipitation model. In this scheme, the radar reflection intensity at the constant altitude of 1.5 km is applied first to the KMA local analysis and prediction system (KLAPS) 5 km grid cell to obtain 1 km resolution. For the second step the elevation and topography effect on the basis of 270 m digital elevation model (DEM) which represented by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) is applied to the 1 km resolution data to produce the 270 m precipitation map. An experimental watershed with about $50km^2$ catchment area was selected for evaluating this scheme and automated rain gauges were deployed to 13 locations with the various elevations and slope aspects. 19 cases with 1 mm or more precipitation per day were collected from January to May in 2013 and the corresponding KLAPS daily precipitation data were treated with the second step procedure. For the first step, the 24-hour integrated radar echo data were applied to the KLAPS daily precipitation to produce the 1 km resolution data across the watershed. Estimated precipitation at each 1 km grid cell was then regarded as the real world precipitation observed at the center location of the grid cell in order to derive the elevation regressions in the PRISM step. We produced the digital precipitation maps for all the 19 cases by using RATER and extracted the grid cell values corresponding to 13 points from the maps to compare with the observed data. For the cases of 10 mm or more observed precipitation, significant improvement was found in the estimated precipitation at all 13 sites with RATER, compared with the untreated KLAPS 5 km data. Especially, reduction in RMSE was 35% on 30 mm or more observed precipitation.

A study on advanced PV operation algorithm to improve the PV Power-Hardware-In-Loop Simulator (PV PHIL-시뮬레이터의 성능 개선을 위한 최적의 운영제어 알고리즘 연구)

  • Kim, Dae-Jin;Kim, Byungki;Ko, Hee-Sang;Jang, Moon-Seok;Ryu, Kyung-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.444-453
    • /
    • 2017
  • This paper proposes an operational algorithm for a Photovoltaic Power-Hardware-In-Loop Simulator that is designed to improve the control algorithm and reliability of the PV Inverter. There was an instability problem in the PV PHILS with the conventional algorithm when it was connected tothe PV inverter. Initially, a real-time based computing unit with mathematical modeling of the PV array is implemented and a DC amplifier and an isolated device for DC power measurement are integrated. Several experiments were performed based on theabove concept undercertain conditions, which showed that the proposed algorithm is more effective for the PV characteristic test and grid evaluation test than the conventional method.