• Title/Summary/Keyword: Real Time X-Ray Imaging

Search Result 30, Processing Time 0.059 seconds

In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Using X-ray Micro-imaging Technique (X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측)

  • Kim, Yang-Min;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1693-1696
    • /
    • 2004
  • Synchrotron X-ray micro-imaging technique was employed to monitor non-invasively the refilling process of water inside the xylem vessels in bamboo leaves. The consecutive phase-contrast X-ray images clearly show both plant anatomy and the transport of water inside the xylem vessels. Traces of water-rise, vapor bubbles and variations of contact angle between the water front and the xylem wall were measured in real time. During the refilling process, air bubbles are removed when the rising water front halts at a vessel end for a while. Subsequently, it starts rising again at a higher velocity than the normal refilling speed. Repeated cavitation seems to deteriorate the refilling ability in xylem vessels. In dark environment, the water refilling process in xylem vessels is facilitated more effectively than in bright illuminated conditions. Finally, X-ray micro-imaging was famed to be a powerful, high resolution, real time imaging tool to investigate the water refilling process in xylem vessels.

  • PDF

Real-time Observation and Analysis of Solidification Sequence of Fe-Rich Al-Si-Cu Casting Alloy by Synchrotron X-ray Radiography (가속 방사광을 활용한 Fe함유 Al-Si-Cu 주조용 합금의 응고과정 실시간 관찰 및 분석)

  • Kim, Bong-Hwan;Lee, Sang-Hwan;Yasuda, Hideyuki;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.100-110
    • /
    • 2010
  • The solidification sequence and formation of intermetallic phase of Fe-rich Al-Si-Cu alloy were investigated by using real-time imaging of synchrotron X-ray radiation. Effects of cooling rate during uni-directional solidification on the resultant solidification behavior was also studied in a specially constructed vacuum chamber in the SPring-8 facility. The series of radiographic images were complementarily analyzed with conventional analysis of OM and SEM/EDX for phase identification. Detailed solidification sequence and formation mechanisms of various phases were discussed based on real-time image analysis. The growth rates of $\alpha$-AlFeMnSi and ${\beta}-Al_5FeSi$ were measured in order to understand the growth behavior of each phase. It is suggested that real-time imaging technique can be a powerful tool for the precise understanding of solidification behavior of various industrial materials.

Study of Discharge Erasing Method of a-Se based Digital X-ray Detector (a-Se을 이용한 디지털 X-선 검출기의 Discharge Erasing Method에 관한 연구)

  • Lee, Dong-Gil;Park, Ji-Koon;Choi, Jang-Yong;Kang, Sang-Sik;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.395-398
    • /
    • 2002
  • Many research group started study to develope x-ray detector using thin film transistor from 1970. But realization of TFT based x-ray detector development was caused by progress of thin film transistor liquid crystal display(TFTLCD) device technology in 1990. The main current of TFT technology is display device. Research results expend TFT technology field from display device to sensor manufacture technology. These days many research group in the world realize various digital x-ray detector. In this study, We compare discharge erasing method to visible light erasing method in a-Se based digital x-ray detector. Visible light erasing method is known reset process in direct conversion x-ray detector. Digital x-ray detector using visible light erasing method is not adaptive for conventional x-ray device, because of its thickness. And it is not avaliable for real-time imaging for digital fluoroscopy, because of its long reset time. In this study we overcome these limitations and show new idea for real-time imaging method.

  • PDF

6 DOF Pose Estimation of Polyhedral Objects Based on Geometric Features in X-ray Images

  • Kim, Jae-Wan;Roh, Young-Jun;Cho, Hyung-S.;Jeon, Hyoung-Jo;Kim, Hyeong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.4-63
    • /
    • 2001
  • An x-ray vision can be a unique method to monitor and analyze the motion of mechanical parts in real time which are invisible from outside. Our problem is to identify the pose, i.e. the position and orientation of an object from x-ray projection images. It is assumed here that the x-ray imaging conditions that include the relative coordinates of the x-ray source and the image plane are predetermined and the object geometry is known. In this situation, an x-ray image of an object at a given pose can be estimated computationally by using a priori known x-ray projection image model. It is based on the assumption that a pose of an object can be determined uniquely to a given x-ray projection image. Thus, once we have the numerical model of x-ray imaging process, x-ray image of the known object at any pose could be estimated ...

  • PDF

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

A Study on the Fast Image Reconstruction Algorithm for Spiral CT (Spiral CT의 고속 영상재구성 알고리즘에 관한 연구)

  • Heo, Chang-Won;Jin, Seung-Oh;Lee, Jae-Duck;Huh, Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3207-3209
    • /
    • 2000
  • X-ray CT(Computed Tomography) has been a good modality for non-invasive diagnosis and recently, Conventional CT has been replaced rapidly with Spiral CT in recent. In X-ray CT, spiral scanning has various advantages such as better image quality, reduced scan time (in a single breath-hold), a lower x-ray dose. But, it requires very fast and high performance image processing system to reconstruct slice images from spiral scanning. This paper describes the fast image reconstruction techniques with filtered back projection from the viewpoints of fast algorithm as well as hardware implementation for real-time imaging.

  • PDF

Seperate Driving System For Large Area X-ray Detector In Radiology (대면적 X-ray 검출기를 위한 분할 구동 시스템)

  • Lee, D.G.;Park, J.K.;Kim, D.H.;Nam, S.H.;Ahn, S.H.;Park, H.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.388-391
    • /
    • 2003
  • The properties of these detectors can be controlled by electronics and exposure conditions. Flat-panel detectors for digital diagnostic imaging convert incident x-ray images to charge images. Flat panel detectors gain more interest real time medical x-ray imaging. Active area of flat panel detector is $14{\times}17$ inch. Detector is based on a $2560{\times}3072$ away of photoconductor and TFT pixels. X-ray conversion layer is deposited upper TFT array flat panel with a 500m by thermal deposition technology. Thickness uniformity of this layer is made of thickness control technology(5%) of thermal deposition system. Each $139m{\times}139m$ pixel is made of thin film transistor technology, a storage capacitor and charge collection electrode having geometrical fill factor of 86%. Using the separate driving system of two dimensional mosaic modules for large area, that is able to 4.2 second per frame. Imaging performance is suited for digital radiography imaging substitute by conventional radiography film system..

  • PDF

A Diagnostic Ultrasound Imaging System (초음파 영상진단장치)

  • Lee, Seong-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.217-232
    • /
    • 1999
  • The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result. their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result. the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described.

  • PDF

System of a Selenium Based X-ray Detector for Radiography (일반촬영을 위한 셀레늄 기반의 엑스선 검출기 시스템)

  • Lee, D.G.;Park, J.K.;Choi, J.Y.;Ahn, S.H.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.817-820
    • /
    • 2002
  • Amorphous selenium based flat panel detectors convert incident x-ray to electric signal directly. Flat panel detectors gain more interest real time medical x-ray imaging. TFT array and electric readout circuits are used in this paper offered by LG.Philips.LCD. Detector is based on a $1536{\times}1280$ array of a-Si TFT pixels. X-ray conversion layer(a-Se) is deposited upper TFT array with a $400{\mu}m$ by thermal deposition technology. Thickness uniformity of this layer is made of thickness control system technology$({\leq}5%)$. Each $139{\mu}m{\times}139{\mu}m$ pixel is made of thin film transistor technology, a storage capacitor and collecting electrode having geometrical fill factor of 86%. This system show dynamic performance. Imaging performance is suited for digital radiography imaging substitute by conventional radiography film system.

  • PDF

Real Time Imaging of Solidification Behavior by Synchrotron X-ray Radiography (싱크로트론 X-선 투과영상법을 활용한 응고거동 실시간 관찰)

  • Lee, Sang-Mok;Yasuda, Hideyuki
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.5-13
    • /
    • 2010
  • This article aims to introduce the synchrotron radiation for its utilization in the casting and solidification fields as an unique tool for observation of real time phenomena of molten metal during solidification. General features of the synchrotron radiation were briefly introduced for readers in the casting and solidification fields, with no background regarding to synchrotron radiation. And basic principles of imaging technologies using synchrotron light for in-situ observation of molten metal were explained together with exemplary research works, which were reported on the casting and solidification fields in recent years. As a practical guide, real time observation of Al-Si casting alloy was introduced with experimental facilities, image acquisition, and processing together with representative results.