• Title/Summary/Keyword: Real Time System

Search Result 14,385, Processing Time 0.042 seconds

Real-Time Digital Fuzzy Control Systems considering Computing Time-Delay

  • Park, Chang-Woo;Shin, Hyun-Seok;Park, Mig-Non
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.423-431
    • /
    • 2000
  • In this paper, the effect of computing time-delay in the real-time digital fuzzy control systems is investigated and the design methodology of a real-time digital fuzzy controller(DFC) to overcome the problems caused by it is presented. We propose the fuzzy feedback controller whose output is delayed with unit sampling period. The analysis and the design problem considering computing time-delay is very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy control system is solved by the linear matrix inequality(LMI) theory. Convex optimization techniques are utilized to find the stable feedback gains and a common positive definite matrix P for the designed fuzzy control system Furthermore, we develop a real-time fuzzy control system for backing up a computer-simulated truck-trailer with the consideration of the computing time-delay. By using the proposed method, we design a DFC which guarantees the stability of the real time digital fuzzy control system in the presence of computing time-delay.

  • PDF

An implementation and performance analysis for robot control software under real-time operating systems (실시간 운영체제를 이용한 로봇제어기 소프트웨어의 구현 및 성능 분석)

  • 손승우;이기동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.375-378
    • /
    • 1996
  • Robot control software is a hard real-time system that must output the planned trajectory points within an explicit short time period. In this paper, we present a design and implementation method for robot control software using commercial real-time operating systems, RTKemel 4.5. Therefore, various robot motions, efficient user interface, and system failure check are easily implemented by using multitasking function, intertask communication mechanism, and real-time runtime libraries of RTKernel. The performance analysis of commercial real-time operating system for robot control is presented based on Timed Petri net(TPN) and we can use these results to design an optimal system.

  • PDF

LRF-Based Servo System for a Manipulator Grasping Moving Cylinders (움직이는 원통형 물체를 잡는 매니퓰레이터를 위한 레이저 거리계 기반의 서보시스템)

  • Cheon, Hong-Seok;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.263-272
    • /
    • 2008
  • We implemented a real-time servo system for a manipulator based on Laser Range Finder (LRF). and established algorithms for grasping a moving cylinder. We devised a manipulator mechanism and driving hardware based on a system board equipped with Xscale Processor with real-time operating system RTAI on Linux. The manipulator motor driver is connected to the system board via CAN communication link, and LRF is connected via RS-232C. We implemented real-time software including CAN device driver, RS-232C device driver, manipulator trajectory generator, and LRF control software. A typical application experiment for grasping a cylinder with circle motion demonstrated our system's real-time performance.

Real-time communication in an off-line programming (오프라인 프로그래밍에서의 실시간 통신)

  • Song, Jong-Tak;Son, Kwon;Lee, Min-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.40-43
    • /
    • 1996
  • An off-line programming, OLP, system is widely used in automation fines. To help an on-line robot system to carry out desirable tasks planned by the off-line simulation, an approach to the real-time communication is presented. The OLP system developed consists of a software, a host computer(PC), a SCARA robot body, four servo drivers, and four independent joint controllers. This study focuses on the software where real-time communication is included. The software, can be used in teaching, trajectory planning, real-time running, and performance evaluation. The evaluation of different control algorithms is one of the merits of the software. The software can give servo commands for task running. A comparison of generated and corresponding actual trajectories provides the evaluation of task performance. The safety, of the OLP system is ensured by alarming malfuntions of the system. The OLP system developed can reduce the teaching time and increase the user's convenience.

  • PDF

a Study on the Real-time Data Linkage of Field Control System for Distributed Control (분산제어를 위한 필드제어시스템의 실시간 데이터 연계)

  • Kim, S.G.;Song, S.I.;Oh, E.S.;Lee, S.W.;Gwak, K.Y.;Lee, E.W.;Park, T.R.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.777-779
    • /
    • 2003
  • This paper describes the real-time data linkage of the field control system for distributed control in nuclear power plant environment. The most important keys of digital control system in nuclear power plant are the reliability and stability of system, and real-time control ability. This Paper brought up the hardware construction using a new method about the design of each station located upon control transmission network to improve real-time ability of field control system, and measured the station binding time between devices connected to field control module. And it was confirmed performance improvement of overall system for real-time data linkage between control devices.

  • PDF

A Study on the Evacuation Performance of Evacuation System using Real-time IoT Information (실시간 IoT 정보 활용 피난시스템의 피난성능 연구)

  • Lee, Chul Gyoo;Moon, Sang Ho;Lee, Sang Kyu;Lee, Gye Eun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.281-291
    • /
    • 2019
  • In order to reflect complex and diverse building types, resident characteristics and disaster factors, it is necessary to introduce a flexible situation-based response system based on real-time information. Intelligent CCTV, hybrid sensor, location scanner, and customized broadcasting device were examined to introduce for the real-time response intelligent response system and its feasibility was verified through field test. In addition, based on the real-time information, the evacuation simulation was executed by assuming the dormitory building and the resident of the school, and the safety of the evacuation and the shortening of the pinnacle time were confirmed. The feasibility of real time information based evacuation comparing with the existing evacuation system were verified in the case of evacuation.

Clogging theory-based real time grouting management system applicable in soil conditions

  • Kwon, Young-Sam;Kim, Jinchun;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.159-168
    • /
    • 2018
  • In this study, a real-time grouting management system based on the clogging theory was established to manage injection procedure in real time. This system is capable of estimating hydraulic permeability with the passage of time as the grout permeates through the ground, and therefore, capable of estimating real time injection distance and flow rate. By adopting the Controlled Injection Pressure (CoIP) model, it was feasible to predict the grout permeation status with the elapse of time by consecutively updating the hydraulic gradient and flow rate estimated from a clogging-induced alteration of pore volume. Moreover, a method to estimate the volume of the fractured gap according to the reduction in injection pressure was proposed. The validity of the proposed system was successfully established by comparing the estimated values with the measured field data.

Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System for the Load Impedance Measurement (부하 임피던스 측정을 위한 랩뷰기반 시간-주파수 영역 반사파 실시간 시스템 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1803-1804
    • /
    • 2006
  • The purpose of this paper is to implement a Labview based TFDR Real Time system through the instruments of Pci eXtensions for Instrumentation(PXI). The proposed load impedance measurement algorithm was verified by experiments via the implemented real time system. The TFDR real time system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display parts. To implement real time system, all of the parts wore programmed by the Labview which is one of graphical programming languages. In the application software implemented by the Labview we were able to design a suitable reference signal according to the length and frequency attenuation characteristics of the target cable and controled the arbitrary waveform generator(ZT500PXI) of the signal generation part and the digital storage oscilloscope(ZT430PXI) of the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we applied to the load impedance measurements. In the proposed load impedance algorithm a normalized time-frequency cross correlation function and a cross time-frequency distribution function was employed to calculate the reflection coefficient and phase difference between the input and the reflected signals.

  • PDF

Study on the MQTT protocol design for the application of the real-time HVAC System

  • Jung, Hun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, the existing domestic HVAC systems, devices TCP / IP does not support the most, thereby, not performed remote management, it is necessary to regularly field service, inefficiency and cost bring a burden. This is through a comparison of the IoT-based primary, real-time protocol of what has become a hot topic recently, to be able to control and real-time monitoring through the CCU device in the HVAC system. Compare for this Internet of Things device for real-time monitoring and control of the XMPP, CoAP, MQTT main real-time protocol is used on. Finally, flexibility, light weight, based on MQTT a two-way messaging protocols with reliable message delivery, implements the protocol on the real-time HVAC system in the cloud platform.

Embedded Real-Time Software Architecture for Unmanned Autonomous Helicopters

  • Hong, Won-Eui;Lee, Jae-Shin;Rai, Laxmisha;Kang, Soon-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.243-248
    • /
    • 2005
  • The UAV (Unmanned Aerial Vehicle) systems like unmanned autonomous helicopters are used in various missions of flight navigation and used to collect the environmental information of the surroundings. To realize the full functionalities of the UAV, the software part becomes a challenging problem. In this paper embedded real-time software architecture for unmanned autonomous helicopter is proposed that guarantee real-time performance of hard-real time tasks and re-configurability of soft-real time and non-real time tasks. The proposed software architecture has four layers: hardware, execution, service agent and remote user interface layer according to the reactiveness level for external events. In addition, the layered separation of concurrent tasks makes different kinds of mission reconfiguration possible in the system. An Unmanned autonomous helicopter system was implemented (Kyosho RC Helicopter) in our lab to test and evaluate the performance of the proposed system.