• Title/Summary/Keyword: Real Plant

Search Result 1,255, Processing Time 0.023 seconds

A Real Options Analysis on Fuel Cell Power Plant considering Mean Reverting Process of Electricity Price (전력가격 평균회귀성을 고려한 연료전지 발전의 실물옵션 분석)

  • Park, Hojeong;Nam, Youngsik
    • Environmental and Resource Economics Review
    • /
    • v.27 no.4
    • /
    • pp.613-637
    • /
    • 2018
  • Fuel cell power plant which has advantages as a distributed generation is influenced by high cost of investment and uncertainty of electricity price. This study suggests the model of real options which considers the irreversibility of investment in the fuel cell plant and the uncertainty of electricity price. Most models of real options assume the geometric Brownian motion for convenience, but this study develops the model for the feasibility analysis considering the mean reverting process of electricity price, with the closed form solution on the value of investment option. The result of the empirical analysis considering the data related to the fuel cell generation with the scale of 20MW and the domestic RPS circumstance represents that the investment is feasible without the uncertainty, and is not feasible with the uncertainty. This result implies that the political support as well as the improvement of profit system including revenue and cost are necessary for the activation of the fuel cell power plant.

A REAL-TIME PMIS BASED INDUSTRIAL CONSTRUCTION PROJECT MANAGEMENT SYSTEM

  • Kyusung Lee;Hojeong Song;Jaehyun Choi
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.352-358
    • /
    • 2013
  • As amount of information in construction industry is growing, the role of information system in project management is becoming increasingly important. With the emerging IT application to the advancing construction industry, construction project management system with advanced technology has been progressed vigorously to improve construction productivity and management efficiency. Recently, a web-based Project Management Information System (PMIS) is developed to support decision-making process by efficiently managing project related information generated from various discipline. Many firms are in the process of developing the PMIS system or already have been applied the system to various projects. However, PMIS is still in its early stage of development to be applied at industrial plant construction projects that process management is significantly emphasized for the successful execution of the project. With the complexity of the industrial plant projects, the industry practitioners need to be able to visualize the construction schedule information to manage the project efficiently. This study suggests methodologies for improving PMIS specialized for industrial plant piping construction projects to estimate the baseline schedule and performance measurement more accurately by developing a framework for the piping construction projects. By using this developed system, the researchers expect that piping construction projects will be more efficiently managed on a real-time basis through measuring progress of piping at each and every state of progress milestone and provide management with opportunities to forecast the level of efforts required to execute the remaining work scope in a timely manner

  • PDF

Changes in Physiological and Psychological Conditions of Humans to Color Stimuli of Plants

  • Jang, Hye Sook;Gim, Gyung Mee;Jeong, Sun Jin;Kim, Jae Soon
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.2
    • /
    • pp.127-143
    • /
    • 2019
  • This study investigates the color stimuli of two varieties of foliage plants by extracting electroencephalogram, electrocardiogram and physiology activity data from 30 participants in their 50s or older. Changes in the physiological activity of subjects against six color stimuli were examined. The stimulus to real green plants 'Silver Queen' was set as the control group, and was compared with other groups including the stimulus to real 'Angel' plants and four stimuli to artificial colors (two color images and color schemes of the same green and red plants). Compared to the five groups, the relative theta power spectrum (RT) and the ratio of alpha to high beta (RAHB) increased in the subjects exposed to real green plants. This result demonstrates that the green plant ('Silver Queen') increases the stability, relaxation, and internal concentration of subjects in a proper state of awakening. The result of this experiment showed a statistically significant difference in the level of RT when subjects were exposed to the groups of real green and red plants. This finding indicates that the green plant increases internal concentration more than the red plant. RT and the relative low beta power spectrum (RLB) in the groups of natural colors were higher than the groups of artificial colors when subjects focused their mind on the two types of real plants. However, the level of relative mid beta power spectrum (RMB), ratio of SMR to theta (RST), ratio of mid beta to theta (RMT), relative high beta power spectrum (RHB), and spectral edge frequency 95% were higher when subjects were exposed to the photos and colors scheme of plants than when they were exposed to real plants. The subjects experienced more "comfortable" emotions when they were looking at plants with green colors. Overall, it is recommended to use the natural colors of real plants in places where which stability and relaxation are required. On the contrary, the artificial colors of plants such as their photos and color schemes are useful in places where a high level of concentration is required in a short period of time.

Modeling and simulation of foxboro control system for YGN#3,4 power plant (영광 3,4호기 Foxboro 제어시스템 모델링 및 시뮬레이션)

  • 김동욱;이용관;유한성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.179-182
    • /
    • 1997
  • In a training simulator for power plant, operator's action in the MCR(Main Control Room) are given to plant process and computer system model as an inputs, and the same response as in real power plant is provided in real time. Inter-process communication and synchronization are especially important among various inputs. In the plant simulator, to simulate the digital control system such as FOXBORO SPEC-200 Micro control system, modification and adaptation of control card(CCC) and its continuous display station(CDS) is necessary. This paper describes the modeling and simulation of FOXBORO SPEC-200 Micro control system applied to Younggwang nuclear power plant unit #3 & 4, and its integration process to the full-scope replica type training simulator. In a simulator, display station like CDS of FOXBORO SPEC-200 Micro control system is classified as ITI(Intelligent Type Instrument), which has a micro processor inside to process information and the corresponding alphanumeric display, and the stimulation of ITI limits the important functions in a training simulator such as backtrack, replay, freeze and IC reset. Therefore, to achieve the better performance of the simulator, modification of CDS and special firmware is developed to simulate the FOXBORO SPEC-200 Micro control system. Each control function inside control card is modeled and simulated in generic approach to accept the plant data and control parameter conveniently, and debugging algorithms are applied for massive coding developed in short period.

  • PDF

A process diagnosis method for membrane water treatment plant using a constant flux membrane fouling model (정유량 막여과 파울링 모델을 이용한 막여과 정수 플랜트 공정 진단 기법)

  • Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.139-146
    • /
    • 2013
  • A process diagnosis method for membrane water treatment plant was developed using a constant flux membrane fouling model. This diagnosis method can be applied to a real-field membrane-based water treatment plant as an early alarming system for membrane fouling. The constant flux membrane fouling model was based on the simplest equation form to describe change in trans-membrane pressure (TMP) during the filtration cycle from a literature. The model was verified using a pilot-scale microfiltraton (MF) plant with two commercial MF membrane modules (72 m2 of membrane area). The predicted TMP data were produced using the model, where the modeling parameters were obtained by the least square method using the early plant data and modeling equations. The diagnosis was carried out by comparing the predicted TMP data (as baseline) and real plant data. As a result of the case study, the diagnsis method worked pretty well to predict the early points where fouling started to occur.

Application of Neural Network for the Intelligent Control of Computer Aided Testing and Adjustment System (자동조정기능의 지능형제어를 위한 신경회로망 응용)

  • 구영모;이승구;이영민;우광방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.79-89
    • /
    • 1993
  • This paper deals with a computer aided control of an adjustment process for the complete electronic devices by means of an application of artificial neural network and an implementation of neuro-controller for intelligent control. Multi-layer neural network model is employed as artificial neural network with the learning method of the error back propagation. Information initially available from real plant under control are the initial values of plant output, and the augmented plant input and its corresponding plant output at that time. For the intelligent control of adjustment process utilizing artificial neural network, the neural network emulator (NNE) and the neural network controller(NNC) are developed. The initial weights of each neural network are determined through off line learning for the given product and it is also employed to cope with environments of the another product by on line learning. Computer simulation, as well as the application to the real situation of proposed intelligent control system is investigated.

  • PDF

A Study On the Design Of Fuzzy Controller for the Steam Temperature Process in the Coal Fired Power Plant

  • Shin, Sang-Doo;Kim, Yi-Gon;Lee, Bong-Kuk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.350-353
    • /
    • 2003
  • In this paper, we proposed the method to design fuzzy controller using the experience of the operating expert and experimental numeric data for the robust control about the noise and disturbance instead of the traditional PID controller for the main steam temperature control of the thermal power plant. The temperature of main steam temperature process has to be controlled uniformly for the stable electric power output. The process has the problem of the hunting for the cases of various disturbances. In that case, the manual action of the operator happened to be introduced in some cases. We adopted the TSK (Takagi-Sugeno-Kang) model as the fuzzy controller and designed the fuzzy rules using the informations extracted directly from the real plant and various operating condition to solve the above problems and to apply practically. We implemented the real fuzzy controller as the Function Block module in the DCS(Distributed Control System) and evaluated the feasibility through the experiment81 results of the simulation.

  • PDF

Adaptive Re-reflecting Wave Control In Plunger Type Wave Maker System: Experiments In Two Dimensional Wave Basin

  • Park, Gun-Il;Kim, Ki-Jung;Park, Jae-Woong;Lee, Jin-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • The control performances for active re-reflecting wave control suggested in the previous paper have been verified in cases of regular and irregular waves in a real two dimensional wave basin. For regular waves, the control performances are investigated in terms of reflection coefficients, expected amplitudes of propagating waves and wave absorbing capabilities after cessation of wave generation, compared with those of no-control cases. For irregular waves similar verification procedures were adopted. Though there are certain constraints due to the geometrical non-linearity of wave maker and certain nonlinear characteristics due to the near field and gravity waves these experiments show that the control logic could be useful in realizing re-reflecting wave control in conditions of real wave basin.

A REAL-TIME REMOTE SENSING AND DATA ACQUISITION SYSTEM FOR A NUCLEAR POWER PLANT

  • Kim, Ki-Ho;Hieu, Bui Van;Beak, Seung-Hyun;Choi, Seung-Hwan;Son, Tae-Ha;Kim, Jung-Kuk;Han, Seung-Chul;Jeong, Tai-Kyeong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • A Structure Health Monitoring (SHM) system needs a real-time remote data acquisition system to monitor the status of a structure from anywhere via Internet access. In this paper, we present a data acquisition system that monitors up to 40 Fiber Bragg Grating Sensors remotely in real-time. Using a TCP/IP protocol, users can access information gathered by the sensors from anywhere. An experiment in laboratory conditions has been done to prove the feasibility of our proposed system, which is built in special-purpose monitoring system.

The Evaluation for Quality Characteristics of Drying Flowering Plant by Vacuum-Freeze (진공 동결에 의한 건조 화훼류의 품질특성 평가에 관한 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.5-10
    • /
    • 2011
  • In case of using rapid vacuum-freeze drying for high quality dry flower of flowering plant, the morphological and physiological characteristics of dry rose showed as the following. The dry ratio of about 82% presented after 1 day in case of using rapid vacuum-freeze drying and it was reached that the optimum storage water content of general dry products was 18%. The dry ratio of about 89% presented after 4 days. This result indicates very short dry time comparing with natural dry time of 12 days. Also, the morphological characteristics of flowering plant in case of vacuum-freeze drying showed similar shape with real flower. The contraction decreased about 9% comparing with real flower under dry time of 72 hours. But the contraction in case of natural dry decreased 36% and showed noticeable difference. The brightness which affects physiological characteristics of dry flowering plant showed lower values according to the dry process and chromaticity was thick. After 4 days, natural dry was thick with about 2 times comparing with vacuum-freeze drying. In case of vacuum-freeze drying, the quantity of anthocyanin and chlorophyl which affect discoloration and bleaching of dry flowering plant showed the clear difference comparing with natural dry method due to the sublimation by vacuum after rapid freeze with short initial time.