• Title/Summary/Keyword: Real Depth of Cut

Search Result 19, Processing Time 0.022 seconds

Monitoring of Grinding Force in Plunge Grinding Process (원통 플런지 연삭시 연삭력에 관한 실험적연구)

  • Park, Jong-Chan;Park, Cheol-Woo;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.881-894
    • /
    • 1999
  • Cylindrical plunge grinding is widely used for final machining process of precision parts such as automobile, aircraft, measurement units. But in order to make parts which have high precision accuracy and high surface integrity, it is necessary to consider grinding characteristics due to accumulation phenomena of grinding wheel in plunge grinding process. In this study, in order to examine closely plunge grinding process, grinding power, grinding force, real depth of cut are monitored in transient state, steady state and spark out state. As the result, it is shown that grinding power and force are affected by dressing condition, depth of cut and speed ratio and that there exist threshold grinding force and it also affected by dressing condition. Also considered effects of grinding conditions on surface roughness and roundness of workpiece

Real-Time 2D-to-3D Conversion for 3DTV using Time-Coherent Depth-Map Generation Method

  • Nam, Seung-Woo;Kim, Hye-Sun;Ban, Yun-Ji;Chien, Sung-Il
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.9-16
    • /
    • 2014
  • Depth-image-based rendering is generally used in real-time 2D-to-3D conversion for 3DTV. However, inaccurate depth maps cause flickering issues between image frames in a video sequence, resulting in eye fatigue while viewing 3DTV. To resolve this flickering issue, we propose a new 2D-to-3D conversion scheme based on fast and robust depth-map generation from a 2D video sequence. The proposed depth-map generation algorithm divides an input video sequence into several cuts using a color histogram. The initial depth of each cut is assigned based on a hypothesized depth-gradient model. The initial depth map of the current frame is refined using color and motion information. Thereafter, the depth map of the next frame is updated using the difference image to reduce depth flickering. The experimental results confirm that the proposed scheme performs real-time 2D-to-3D conversions effectively and reduces human eye fatigue.

Effect of Change of Grinding Force on Geometric Error (연삭력 변화량이 공작물의 형상오차에 미치는 영향)

  • Chi, Long-Zhn;Lee, Sang-Jin;Park, Hoo-Myung;Oh, Sang-Lok;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • A real depth of cut in deformed zone has larger than an ideal depth of cut. So the heat generated during grinding operation makes the deformation of a workpiece surface as convex farm. Consequently the workpiece surface remains a geometric error as concave form after cooling In this study, the grinding force and the geometric error were examined in surface grinding. Through magnitude and mode of geometric error were evaluated according to grinding conditions, an optimal grinding condition was proposed to minimize the geometric error In addition, the relationship between the geometric error and the grinding force was examined. Due to least square regression, It was possible to predict the geometric error by using the grinding force.

  • PDF

Geometric Error Prediction of Ground Surface by Using Grinding Force (연삭력을 이용한 공작물의 형상오차 예측)

  • 하만경;지용주;곽재섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 2004
  • Because a generated heat during grinding operation makes a serious deformation on a ground surface as a convex form, a real depth of cut in deformed zone has larger than an ideal depth of cut. Consequently, the ground surface has a geometric error as a concave form after cooling the workpiece. In this study, the force and the geometric error of surface grinding were examined. From evaluating magnitude and mode of the geometric error according to grinding conditions, an optimal grinding condition was proposed to minimize the geometric error. In addiction the relationship between the geometric error and the grinding force was found out. Due to least square regression it was able to predict the geometric error by using the grinding force.

System identification and admittance model-based nanodynamic control of ultra-precision cutting process (다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

A Study on the Cutter Runout Compensation by PI Control in End Mill Process (엔드밀 가공시 비례적분제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Lee, Ki-Yong;Hwang, Jun;Jung, Eui-Sik;Liang, Steven Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 1998
  • This paper presents in-process compensation methodology to eliminate cutter runout and improve machined surface quality. The cutter runout compensation system consists of the micro-positioning mechanism with the PZT (piezo-electric translator) which is embeded in the sliding table to manipulate the radial depth of cut in real time. For the implementation of cutter runout compensation methodology. cutting force adaptive control was proposed in the angle domain based upon PI (proportional-integral) control strategy to eliminate chip-load change in end milling process. Micro-positioning control due to adaptive acuation force response improves the machined surface quality by compensation or elimination of cutter runout induced cutting force variation. This results will provide lots of information to build-up the precision machining technology.

  • PDF

Single-View Reconstruction of a Manhattan World from Line Segments

  • Lee, Suwon;Seo, Yong-Ho
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Single-view reconstruction (SVR) is a fundamental method in computer vision. Often used for reconstructing human-made environments, the Manhattan world assumption presumes that planes in the real world exist in mutually orthogonal directions. Accordingly, this paper addresses an automatic SVR algorithm for Manhattan worlds. A method for estimating the directions of planes using graph-cut optimization is proposed. After segmenting an image from extracted line segments, the data cost function and smoothness cost function for graph-cut optimization are defined by considering the directions of the line segments and neighborhood segments. Furthermore, segments with the same depths are grouped during a depth-estimation step using a minimum spanning tree algorithm with the proposed weights. Experimental results demonstrate that, unlike previous methods, the proposed method can identify complex Manhattan structures of indoor and outdoor scenes and provide the exact boundaries and intersections of planes.

Object-Based Integral Imaging Depth Extraction Using Segmentation (영상 분할을 이용한 객체 기반 집적영상 깊이 추출)

  • Kang, Jin-Mo;Jung, Jae-Hyun;Lee, Byoung-Ho;Park, Jae-Hyeung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2009
  • A novel method for the reconstruction of 3D shape and texture from elemental images has been proposed. Using this method, we can estimate a full 3D polygonal model of objects with seamless triangulation. But in the triangulation process, all the objects are stitched. This generates phantom surfaces that bridge depth discontinuities between different objects. To solve this problem we need to connect points only within a single object. We adopt a segmentation process to this end. The entire process of the proposed method is as follows. First, the central pixel of each elemental image is computed to extract spatial position of objects by correspondence analysis. Second, the object points of central pixels from neighboring elemental images are projected onto a specific elemental image. Then, the center sub-image is segmented and each object is labeled. We used the normalized cut algorithm for segmentation of the center sub-image. To enhance the speed of segmentation we applied the watershed algorithm before the normalized cut. Using the segmentation results, the subdivision process is applied to pixels only within the same objects. The refined grid is filtered with median and Gaussian filters to improve reconstruction quality. Finally, each vertex is connected and an object-based triangular mesh is formed. We conducted experiments using real objects and verified our proposed method.

Slope Failure Index System Based on the Behavior Characteristics : SFi-system (거동 특성에 따른 사면 파괴 지수 시스템 : SFi-system)

  • 윤운상;정의진;최재원;김정환;김원영;김춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.23-37
    • /
    • 2002
  • Failure of the cut slope is triggered by combination of internal and extemal failure factors. Internal failure factors are related to geological and geometrical conditions of slope itself, and natural and/or artificial loadings on slope can be the external failure factors. Influences of these failure factors show different intensity according to the ground condition and are controlled by behavior characters of the slope. In this study, the soil depth ratio(SR), block size ratio(BR) and rock strength are used as the criteria to divide ground condition based on behavior characteristics. Ground condition of the slope is divided into discontinuous jointed rock mass and continuos soil-like mass, highly fractured rock mass and massive rock mass by the criteria(SR and BR). The SFi-system is a rating system to determine the slope failure index(SFi) by analyzing internal and external factors based on classification of the ground condition. The results of the SFi-system application to the real cut slopes show close relationship between the SFi value and potential or dimension of the failure. Therefore, the SFi-system can be used as a useful tool to predict and analyze the characteristic of the slope failure.

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF