• Title/Summary/Keyword: Reader collision

Search Result 130, Processing Time 0.022 seconds

A Reliable Data Capture in Multi-Reader RFID Environments (다중 태그 인식 기반의 신뢰성 있는 데이터 수집 환경)

  • Lee, Young-Ran
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4133-4137
    • /
    • 2011
  • Reliable Multi-Reader RFID identification is one of issues in Multi-Reader RFID realization program in recent. And the Multi-Reader RFID reader has difficulty to obtain reliable data in data capture layer. The reason is that unreliable readings such as a false positive reading and a false negative reading and missed readings can happen by reader collision problems, noise, or the mobility of tagged objects. We introduce performance metrics to solve these reader problems. We propose three solutions the Minimum Overlapped Read Zone (MORZ) with Received Signal Strength Indicator (RSSI), the Spatial-Temporal Division Access (STDA) method, and double bigger size of tags attached on the object. To show the improvement of the proposed methods, we calculate tag's successful read rates in a smart office, which consists of Multi-Reader RFID systems.

Anti-collision Algorithm with Early Cancellation of Query Round in RFID Systems

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.292-296
    • /
    • 2009
  • The performance of anti-collision algorithm in RFID systems, which are based on FSA algorithm, may be affected by the frame size a query round. In this paper, an anti-collision algorithm with early cancellation of query round is proposed to enhance the performance of EPCglobal Class-1 Gen-2. The Q-algorithm calculates a Q value to determine the next frame size during a query round. In the proposed algorithm, if the new Q value is different from the previous one, the reader transmits a QueryAdjust command to cancel the current query round. The simulation results show that the proposed algorithm can have a stable performance irrespective of the C value of Q-algorithm and the number of tags.

An Efficient Anti-collision Algorithm for the EPCglobal Class-1 Generation-2 System under the Dynamic Environment

  • Chen, Yihong;Feng, Quanyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3997-4015
    • /
    • 2014
  • Radio frequency identification (RFID) is an emerging wireless communication technology which allows objects to be identified automatically. The tag anti-collision is a significant issue for fast identifying tags due to the shared wireless channel between tags and the reader during communication. The EPCglobal Class-1 Generation-2 which uses Q algorithm for the anti-collision is widely used in many applications such as consumer electronic device and supply chain. However, the increasing application of EPCglobal Class-1 Generation-2 which requires the dynamic environment makes the efficiency decrease critically. Furthermore, its frame length (size) determination and frame termination lead to the suboptimal efficiency. A new anti-collision algorithm is proposed to deal with the two problems for large-scale RFID systems. The algorithm has higher performance than the Q algorithm in the dynamic environment. Some simulations are given to illustrate the performance.

Performance Improvement of STAC Protocol by Grouping the Number of Tags (태그 수 그룹화를 통한 STAC 프로토콜의 성능 개선)

  • Lim, Intaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.807-812
    • /
    • 2015
  • In RFID system, when multiple tags respond simultaneously, a collision can occur. A method that solves this collision is referred as anti-collision algorithm. In 13.56MHz RFID system of Auto-ID center, STAC protocol is defined as an anti-collision algorithm for multiple tag reading. The PS algorithm divides the tags within the identification range of reader into smaller groups by increasing the transmission power incrementally and identifies them. In this paper, we propose a STAC/PS algorithm that the PS algorithm is applied in the STAC protocol. Through simulations, it is demonstrated that the collision rate for the proposed algorithm is about 50% lower than STAC protocol. Therefore, the STAC/PS algorithm can achieve faster tag identification speed compared with STAC protocol due to the low collision rate.

A Study on the Data Throughput of ALOHA and Slotted-ALOHA Method in an RFID System (무선인식 시스템에서의 알로하 기법과 슬롯-알로하 기법의 데이터 처리량에 관한 연구)

  • Yun Shang-Moon;Lee Key-Sea
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.594-599
    • /
    • 2003
  • This paper proposed to compare and analyze the data throughput of ALOHA and Slotted-ALOHA method which were used to the communication of satellites in an early stage and apply to the data throughput of a transponder in an RFID system. The ALOHA method is the operation priority to a transponder but the Slotted ALOHA method is the operation priority to an reader in an RFID system. Because ALOHA method transmits the data to an reader as a authority of a transponder at random time when generating collisions, therefore, it seems reasonable to conclude that ALOHA method is inefficient for the data throughput and the efficiency of collision interval than Slotted-ALOHA method that synchronizes and controls the transponder in an reader.

  • PDF

A Variable-Slotted Tree Based Anti-Collision Algorithm Using Bit Change Sensing in RFID Systems (RFID 시스템에서 비트 변화 감지를 이용한 가변 슬롯 트리 기반 충돌 방지 알고리즘)

  • Kim, Won-Tae;Ahn, Kwang-Seon;Lee, Seong-Joon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.289-298
    • /
    • 2009
  • Generally, RFID systems are composed of one reader and several passive tags, and share the single wireless channel. For this reason, collisions occurwhen more than two tags simultaneously respond to the reader's inquiry. To achieve this problem, many papers, such as QT[8], HCT[10], BSCTTA[2], and QT-BCS[9], have been proposed. In this paper, we propose the tree-based anti-collision algorithm using a bit change sensing unit (TABCS) based on BSCTTA algorithm. The proposed algorithm can identify bits returned from tags through bit change sensing unit, even if multi collisions occur. So, it rapidly generates the unique prefix to indentify each tag, and reduce the total of bits. As the result, the cost of identifying all tag IDs is relatively reduced as compared with existing algorithms. It is verified through simulations that the proposed algorithm surpass other existing algorithms.

A Fast Tag Prediction Algorithm using Extra Bit in RFID System (RFID 시스템에서 추가 비트를 이용한 빠른 태그 예측 알고리즘)

  • Baek, Deuk-Hwa;Kim, Sung-Soo;Ahn, Kwang-Seon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.255-261
    • /
    • 2008
  • RFID(Radio Frequency IDentification) is a technology that automatically identifies objects containing the electronic tags by using radio frequency. In RFID system, the reader needs the anti collision algorithm for fast identifring all of the tags in the interrogation zone. This Paper proposes the tree based TPAE(Tag Prediction Algorithm using Extra bit) algorithm to arbitrate the tag collision. The proposed algorithm can identify tags without identifring all the bits in the tag ID. The reader uses the extra bit which is added to the tag ID and if there are two collided bits or multiple collided bits, it checks the extra bit and grasps the tag IDs concurrently. In the experiment, the proposed algorithm had about 50% less query iterations than query tree algorithm and binary search algorithm regardless of the number of tags and tag ID lengths.

  • PDF

An Efficient Tag Identification Algorithm Using Improved Time Slot Method (개선된 타임 슬롯 방법을 이용한 효과적인 태그 인식 알고리즘)

  • Kim, Tae-Hee;Kim, Sun-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • In recent year, the cores of ubiquitous environment are sensor networks and RFID systems. RFID system transmits the electronic information of the tag to the reader by using RF signal. Collision happens in RFID system when there are many matched tags, and it degrades the tag identification performance. Such a system needs algorithm which is able to arbitrate tag collision. This paper suggests a hybrid method which reduces collision between the tags, and can quickly identify the tag. The proposed method operates based on certainty, which takes an advantage of tree based algorithm, and to reduce collision it selects transmission time slot by using tag ID. The simulation results show the suggested method has higher performance in the number of queries and collision compared to other tree based and hybrid algorithms.

A Hybrid Hyper Query Tree Algorithm for RFID System (RFID 시스템을 위한 하이브리드 하이퍼 쿼리 트리 알고리즘)

  • Kim, Tae-Hee;Lee, Seong-Joon;Ahn, Kwang-Seon
    • The KIPS Transactions:PartA
    • /
    • v.15A no.5
    • /
    • pp.287-294
    • /
    • 2008
  • A tag collision arbitration algorithm for RFID passive tags is one of the important issues for fast tag identification, since reader and tag have a shared wireless channel in RFID system. This paper suggests Hyper-Hybrid Query Tree algorithm to prevent the tag-collisions. The suggested algorithms determine the specified point in time for tag to transfer ID to reader by using value 1 of the upper 3 bit based on Query Tree. Also, because the transferred upper 3 bits of tag is different depending on the time of transfer, it is possible to predict in the suggested Algorithm. In the performance evaluation through simulation, it shows the suggested algorithm has higher performance in the number of queries compared to other Tree-based protocols.

A Revised QT Protocol for Tag Identification in RFID Systems (RFID 시스템에서 태그 식별을 위한 개선된 QT 프로토콜)

  • Lim, In-Taek;Choi, Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.430-436
    • /
    • 2006
  • In this paper, a QT_rev protocol is proposed for identifying all the tags within the identification range. The proposed QT_rev protocol revises the QT protocol, which has a memoryless property. In the QT_rev protocol, the tag will send the remaining bits of their identification codes when the query string matches the first bits of their identification codes. After the reader receives all the responses of the tags, it knows which bit is collided. If the collision occurs in the last bit, the reader can identify two tags simultaneously without further query. According to the simulation results, the QT_rev protocol outperforms the QT protocol in terms of the number of queries and the number of response bits.