• Title/Summary/Keyword: Reactor stability

Search Result 337, Processing Time 0.024 seconds

Conceptual Core Design of 1300MWe Reactor for Soluble Boron Free Operation Using a New Fuel Concept

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.391-400
    • /
    • 1999
  • A conceptual core design of the 1,300MWe KNGR (Korean Next Generation Reactor) without using soluble boron for reactivity control was developed to determine whether it is technically feasible to implement SBF (Soluble Boron Free) operation. Based on the borated KNGR core design, the fuel assembly and control rod configuration were modified for extensive use of burnable poison rods and control rods. A new fuel rod, in which Pu-238 had been substituted for a small amount of U-238 in fuel composition, was introduced to assist the reactivity control by burnable poison rods. Since Pu-238 has a considerably large thermal neutron capture cross section, the new fuel assembly showed good reactivity suppression capability throughout the entire cycle turnup, especially at BOC (Beginning of Cycle). Moreover, relatively uniform control of power distribution was possible since the new fuel assemblies were loaded throughout the core. In this study, core excess reactivity was limited to 2.0 %$\delta$$\rho$ for the minimal use of control rods. The analysis results of the SBF KNGR core showed that axial power distribution control can be achieved by using the simplest zoning scheme of the fuel assembly Furthermore, the sufficient shutdown margin and the stability against axial xenon oscillations were secured in this SBF core. It is, therefore, concluded that a SBF operation is technically feasible for a large sized LWR (Light Water Reactor).

  • PDF

Integrity Evaluation of Agitating Axis and Blade in the Organic Waste Reactor (유기성 폐기물 반응기 내부 교반 축 및 블레이드 건전성 평가)

  • Yun, Yu Seong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.1-6
    • /
    • 2017
  • Modern society has been experiencing by population growth and urbanization that bring, a change of eating habits which has occurred a various types of waste in a large amount. Even though these wastes are required an immediate treatment with difficulties unsanitary handling and existing waste treatment method are by incineration, fermentation, drying and etc. however a bad smell occurs after the treatment that need's a lot of energy in processing organic wastes with high moisture contents and wasteful and inefficient problem. The strength assessment of the organic waste agitating vessel is required in terms of safety due to the differences of loading on the shaft that was treated by agitating the mixture of food waste. The damage of agitating axis is depended on steam pressure, temperature condition and the force moment that exerted by the food waste. Thus the strength assessment and stability evaluation are very important, especially to handle a hard waste. In this study the rotation capacity of agitation is about 5 tons considering general structural rolled steel pressure vessel strength and steam pressure. The purpose is to estimate the safety and strength evaluation for a agitator axis and impellers according to the rotating angle of the axis under the condition of the 3.2 ton capacity reactor.

Evaluation on Creep Properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor (핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가)

  • 공유식;윤한기;남승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.58-63
    • /
    • 2004
  • Reduced Activation Ferritic/Martensitic Steels (RAFs) are leading candidntes for structural materials of a D-T fusion reactor. One of the RAFs, JLF-l (9Cr-2W-V, Ta) has been developed and has shown to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanisms at high temperatures, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test technique development of high temperature creep behaviors for this material is very important. In this paper, the creep properties and creep life prediction, using the Larson-Miler parameter method for JLF-l to be used for fusion reactor materials or other high temperature components, are presented at the elevated temperatures of 50$0^{\circ}C$, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and 704$^{\circ}C$. It was confirmed, experimentally and quantitatively, that a creep life predictive equation, at such various high temperatures, is well derived mr the LMP method.

Production of Palatinose by Immobilized Cells of Erwinia rhapontici (Erwinia rhapontici 고정화에 의한 Palatinose의 생산)

  • 윤종원;오광근
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.79-83
    • /
    • 1992
  • The characteristics of Erwinia rhapontici cells with $\alpha$-glucosyltransferase activity immobilized in Ca-alginate beads and the performance of two different types of reactor-stirred tank reactor(STR) and packed bed reactor(PBR)-charged with these immobilized cells to produce palatinose from sucrose were investigated. The optimal pH(5.5-6.0) and temperature($30-35^{\circ}C$) showed no appreciable difference between free and immobilized cells. The apparent Km value of the immobilized cells(0.28M) was approximately two times higher than that of free cells(0.13M) at $30^{\circ}C$. The half life of the immobilized cells was found to be 380 h with STR while much greater operational stability was achieved with PBR. Continuous operation of PBR at a space velocity of $0.2h^{-1}$ for 30 days showed only 5% loss of initial activity.

  • PDF

The Control Rod Speed Design for the Nuclear Reactor Power Control Using Optimal Control Theory (최적제어이론에 의한 원자로 제어봉속도의 설계)

  • Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.536-547
    • /
    • 1994
  • The state feedback optimal control techniques are used in designing the reactor control system. The mathematical plant model with the temperature feedback effects is established from the one delayed neutron group point kinetics equation and the singly lumped thermal-hydraulic balance equations, and is expressed in terms of state variables. The LQR (Linear Quadratic Regulator) control system is designed, being followed by the LQG (Linear Quadratic Gaussian) design to determine the optimal conditions of rod movement for the desired reactor power responses. And two different servo control schemes, the ordinary feedback system and the order increased regulating system, are proposed for the purpose of input tacking. The general control characteristics such as stability margins and output responses are discussed. Comparing each other, it is found that the order increased regulating system has far better control characteristics than the ordinary feedback system.

  • PDF

High fidelity transient solver in STREAM based on multigroup coarse-mesh finite difference method

  • Anisur Rahman;Hyun Chul Lee;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3301-3312
    • /
    • 2023
  • This study incorporates a high-fidelity transient analysis solver based on multigroup CMFD in the MOC code STREAM. Transport modeling with heterogeneous geometries of the reactor core increases computational cost in terms of memory and time, whereas the multigroup CMFD reduces the computational cost. The reactor condition does not change at every time step, which is a vital point for the utilization of CMFD. CMFD correction factors are updated from the transport solution whenever the reactor core condition changes, and the simulation continues until the end. The transport solution is adjusted once CMFD achieves the solution. The flux-weighted method is used for rod decusping to update the partially inserted control rod cell material, which maintains the solution's stability. A smaller time-step size is needed to obtain an accurate solution, which increases the computational cost. The adaptive step-size control algorithm is robust for controlling the time step size. This algorithm is based on local errors and has the potential capability to accept or reject the solution. Several numerical problems are selected to analyze the performance and numerical accuracy of parallel computing, rod decusping, and adaptive time step control. Lastly, a typical pressurized LWR was chosen to study the rod-ejection accident.

Performance evaluation of plasma nitrided 316L stainless steel during long term high temperature sodium exposure

  • Akash Singh;R. Thirumurugesan;S. Krishnakumar;Revati Rani;S. Chandramouli;P. Parameswaran;R. Mythili
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1468-1475
    • /
    • 2023
  • Enhancement of wear resistance of components used in fast reactors is necessary for long service life of the components. Plasma nitriding is a promising surface modification technology to impart high hardness and improved wear resistance of various steel components. This study discusses the characterization of chrome nitrided SS316L casing ring used in secondary sodium pump of fast breeder reactor and its stability under long term sodium exposure. Microstructural and hardness analysis showed that stress relieved component could be chrome nitrided successfully to a thickness of about 100 ㎛. Assessment of in-sodium performance of the chrome nitrided casing ring subjected to long term exposure up to 5000h at 550℃, showed retention of chrome nitrided layer with a case depth almost similar to that before sodium exposure. A slight decrease in the hardness was observed due to prolonged high temperature sodium exposure. Tribological studies indicate very low coefficient of friction indicating the retention of good wear resistance of the coating even after long term sodium exposure.

Study of Advanced Control for Chemical Process Using the Commercial Package PCTP Based on Model Predictive Control Algorithm (모델예측제어기반 상용 Package PCTP를 이용한 화학공정의 제어 고도화 연구)

  • Park, Jun-Ho;Park, Ho-Cheol;Lee, Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1128-1136
    • /
    • 2007
  • This paper presents an application study of a model predictive control based commercial package PCTP to real chemical processes. The first case study concerns a product purity control of a splitter process which distillates styrene from undesired component ethyl-benzene produced from ethyl-benzene dehydrogenation reaction. The second case study is about a temperature control of ethyl-benzene dehydrogenation reactor and an excess oxygen control of the fired heater. Optimum control structure for MPC application is developed for each case study. The application results show a significant improvement in control performance and stability.

Control Modelling and Controllability Evaluation of Liquid Zone Control System (액체영역제어계통의 제어모델링 및 제어성 평가)

  • Lee, Kwang-Dae;Yang, Seung-Ok;Oh, Eung-Se
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.641-643
    • /
    • 2004
  • Liquid Zone Control System controls the power of heavy water reactor. Changing the level of each zone compartment regulates one local zone power of 14 zone powers, iud the level is limited less than 90% by the control algorithm to prevent the flood. In recent years, the level and the power was controlled oscillatory in the upper zones. To find out the condition of cycling, the zone control system was modelled with the linear difference equations and identified using parameter estimation. The pole-zero plot showed that the major pole was near the stability boundary, and the system had oscillatory characteristics in nature.

  • PDF

Feasibility of Composting Combinations of Sewage Sludge, Cattle Manure, and Sawdust in a Rotary Drum Reactor

  • Nayak, Ashish Kumar;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.47-57
    • /
    • 2014
  • The aim of this paper was to study the effect of five different waste combinations (C/N 15, C/N 20, C/N 25, C/N 30, and control) of sewage sludge coupled with sawdust and cattle manure in a pilot scale rotary drum reactor, during 20 days of the composting process. Our results showed that C/N 30 possesses a higher temperature regime with higher % reduction in moisture content, total organic carbon, soluble biochemical oxygen demand and chemical oxygen demand; and higher % gain in total nitrogen and phosphorus at the end of the composting period implying the total amount of biodegradable organic material is stabilized. In addition, $CO_2$ evolution and oxygen uptake rate decreased during the process, reflecting the stable behavior of the final compost. A Solvita maturity index of 8 indicated that the compost was stable and ready for usage as a soil conditioner. The results indicated that composting can be an alternate technology for the management of sewage sludge disposal.