• Title/Summary/Keyword: Reactor safety

Search Result 1,240, Processing Time 0.029 seconds

Transient Simulations of Concrete Ablation due to a Release of Molten Core Material (방출된 노심용융 물질에 의한 콘크리트 침식 천이 모의)

  • Kim, H.Y.;Park, J.H.;Kim, H.D.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3491-3496
    • /
    • 2007
  • If a molten core is released from a reactor vessel into a reactor cavity during a severe accident, an important safety issue of coolability of the molten core from top-flooding and concrete ablation due to a molten core concrete interaction (MCCI) is still unresolved. The released molten core debris would attack the concrete wall and basemat of the reactor cavity, which will lead to inevitable concrete decompositions and possible radiological releases. In a OECD/MCCI project scheduled for 4 years from 2002. 1 to 2005. 12, a series of tests were performed to secure the data for cooling the molten core spread out at the reactor cavity and for the 2-D long-term core concrete interaction (CCI). The tests included not only separate effect tests such as a melt eruption, water ingression, and crust failure tests with a prototypic material but also 2-D CCI tests with a prototypic material under dry and flooded cavity conditions. The paper deals with the transient simulations on the CCI-2 test by using a severe accident analysis code, CORQUENCH, which was developed at Argonne National Laboratory (ANL). Similar simulations had been already per for me d by using MELCOR 1.8.5 code. Unlike the MELCOR 1.8.5, the CORQUENCH includes a melt eruption mode I and a newly developed water ingression model based on the water ingression tests under the OECD/MCCI project. In order to adjust the geometrical differences between the CCI-2 test (rectangular geometry) and the simulations (cylindrical geometry), the same scaling methodology as used in the MELCOR simulation was applied. For the direct comparison of the simulation results, the same inputs for the MELCOR simulation were used. The simulation results were compared with the previous results by using MELCOR 1.8.5.

  • PDF

Assessments of RELAP5/MOD3.2 and RELAP5/CANDU in a Reactor Inlet Header Break Experiment B9401 of RD-14M

  • Cho Yong Jin;Jeun Gyoo Dong
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.426-441
    • /
    • 2003
  • A reactor inlet header break experiment, B9401, performed in the RD-14M multi channel test facility was analyzed using RELAP5/MOD3.2 and RELAP5/CANDU[1]. The RELAP5 has been developed for the use in the analysis of the transient behavior of the pressurized water reactor. A recent study showed that the RELAP5 could be feasible even for the simulation of the thermal hydraulic behavior of CANDU reactors. However, some deficiencies in the prediction of fuel sheath temperature and transient behavior in athe headers were identified in the RELAP5 assessments. The RELAP5/CANDU has been developing to resolve the deficiencies in the RELAP5 and to improve the predictability of the thermal-hydraulic behaviors of the CANDU reactors. In the RELAP5/CANDU, critical heat flux model, horizontal flow regime map, heat transfer model in horizontal channel, etc. were modified or added to the RELAP5/MOD3.2. This study aims to identify the applicability of both codes, in particular, in the multi-channel simulation of the CANDU reactors. The RELAP5/MOD3.2 and the RELAP5/CANDU analyses demonstrate the code's capability to predict reasonably the major phenomena occurred during the transient. The thermal-hydraulic behaviors of both codes are almost identical, however, the RELAP5/CANDU predicts better the heater sheath temperature than the RELAP5/MOD3.2. Pressure differences between headers govern the flow characteristics through the heated sections, particularly after the ECI. In determining header pressure, there are many uncertainties arisen from the complicated effects including steady state pressure distribution. Therefore, it would be concluded that further works are required to reduce these uncertainties, and consequently predict appropriately thermal-hydraulic behaviors in the reactor coolant system during LOCA analyses.

OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR LWRS - SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I)

  • Bratton, Ryan N.;Avramova, M.;Ivanov, K.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.313-342
    • /
    • 2014
  • A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for Uncertainty Analysis in Modeling (UAM) is defined in order to facilitate the development and validation of available uncertainty analysis and sensitivity analysis methods for best-estimate Light water Reactor (LWR) design and safety calculations. The benchmark has been named the OECD/NEA UAM-LWR benchmark, and has been divided into three phases each of which focuses on a different portion of the uncertainty propagation in LWR multi-physics and multi-scale analysis. Several different reactor cases are modeled at various phases of a reactor calculation. This paper discusses Phase I, known as the "Neutronics Phase", which is devoted mostly to the propagation of nuclear data (cross-section) uncertainty throughout steady-state stand-alone neutronics core calculations. Three reactor systems (for which design, operation and measured data are available) are rigorously studied in this benchmark: Peach Bottom Unit 2 BWR, Three Mile Island Unit 1 PWR, and VVER-1000 Kozloduy-6/Kalinin-3. Additional measured data is analyzed such as the KRITZ LEU criticality experiments and the SNEAK-7A and 7B experiments of the Karlsruhe Fast Critical Facility. Analyzed results include the top five neutron-nuclide reactions, which contribute the most to the prediction uncertainty in keff, as well as the uncertainty in key parameters of neutronics analysis such as microscopic and macroscopic cross-sections, six-group decay constants, assembly discontinuity factors, and axial and radial core power distributions. Conclusions are drawn regarding where further studies should be done to reduce uncertainties in key nuclide reaction uncertainties (i.e.: $^{238}U$ radiative capture and inelastic scattering (n, n') as well as the average number of neutrons released per fission event of $^{239}Pu$).

Application of high voltage pulse for reduction of membrane fouling in membrane bio-reactor and kinetic approach to fouling rate reduction (막결합형 생물반응기(Membrane Bio-Reactor)의 막 오염 저감을 위한 고전압 펄스의 적용과 막 오염 저감 속도론적 해석)

  • Kim, Kyeong-Rae;Kim, Wan-Kyu;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.183-190
    • /
    • 2020
  • Although membrane bio-reactor (MBR) has been widely applied for wastewater treatment plants, the membrane fouling problems are still considered as an obstacle to overcome. Thus, many studies and commercial developments on mitigating membrane fouling in MBR have been carried out. Recently, high voltage impulse (HVI) has gained attention for a possible alternative technique for desalting, non-thermal sterilization, bromate-free disinfection and mitigation of membrane fouling. In this study, it was verified if the HVI could be used for mitigation of membrane fouling, particularly the internal pore fouling in MBR. The HVI was applied to the fouled membrane under different conditions of electric fields (E) and contact time (t) of HVI in order to investigate how much of internal pore fouling was reduced. The internal pore fouling resistance (Rf) after HVI induction was reduced as both E and t increased. For example, Rf decreased by 19% when the applied E was 5 kV/cm and t was 80 min. However, the Rf decreased by 71% as the E increased to 15 kV/cm under the same contact time. The correlation between E and t that needed for 20% of Rf reduction was modeled based on kinetics. The model equation, E1.54t = 1.2 × 103 was obtained by the membrane filtration data that were obtained with and without HVI induction. The equation states the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increase of E.

A Control Room Dose Assessment for a 1300 MWe PWR Following a Loss of Coolant Accident (냉각재(冷却材) 상실사고시(喪失事故時) 1300 MWe 급(級) PWR원전(原電) 주제어실(主制御室)의 선량평가(線量評價))

  • Chang, Si-Young;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.1
    • /
    • pp.34-45
    • /
    • 1989
  • The habitability of a reactor control room in a French 1300 MWe P'4 type PWR has been evaluated through the exposure dose assessment for the reactor operator following a Loss of Coolant Accident. The main hypotheses adopted in this evaluation are based on the French Standard Safety Analysis Report. A simple computer program, named COREX(Control Room EXposure), was developed to calculate : the time-integrated radioactivities released from the reactor building, the volume factors for radionuclides concerned and the resulting time-integrated external whole body and internal thyroid doses to the reactor operators staying in the control room up to 30 days following the LOCA. The results obtained in this study, on the whole, well agreed with those proposed by the EDF(Electricite de France) except for the case of the whole body exposure, which was attributed to the differences in the volume factors for the radionuclides concerned.

  • PDF

RECYCLING OPTION SEARCH FOR A 600-MWE SODIUM-COOLED TRANSMUTATION FAST REACTOR

  • LEE, YONG KYO;KIM, MYUNG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.47-58
    • /
    • 2015
  • Four recycling scenarios involving pyroprocessing of spent fuel (SF) have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR), KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU) SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro-SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. Thefsensitivity of cooling time before prior to pyro-processing was studied. As the cooling time sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC) decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs). If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE) isotopes. The RE isotope recovery factor should be lowered to ${\leq}20%$ in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

Sensitivity Analysis on PWR Reactivity Induced Accidents (가압경수로 반응도사고에 대한 민감도 분석)

  • Myung Hyun Kim;Un Chul Lee;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.122-137
    • /
    • 1982
  • Analyzed is the sensitivity of reactor transient behavior to various reactor parameters during the reactivity induced accidents (RIA) of the Kori Unit 1. Included in the analysis is a partial spectrum of RIAs with relatively fast transients such as uncontrolled rod cluster control assembly bank withdrawl from a subcritical or low power startup condition and rod ejection accidents. The analysis can be performed generally in three steps: calculation of an average core power change, hot spot heat transfer calculation and DNBR (departure from nucleate boiling ratio) calculation. The computer codes used for the analysis are either developed based on the codes relevent to it. These codes are evaluated to be highly reliable. An extensive sensitivity analysis is performed to study the effects of various reactor design and operating parameters on the reactor transient behavior during the accidents. The assumptions and initial conditions used for the RIA analysis in the Kori Unit 1 FSAR (Final Safety Analysis Report) are reexamined, and the corresponding analysis results are reassessed, based on the sensitivity analysis results, to be conservative and reliable.

  • PDF

Acoustic Structure Interaction Analysis of the Core Support Barrel for Pump Pulsation Loads (펌프 맥동하중에 대한 노심지지배럴 집합체의 음향-구조 연성해석)

  • Lee, Jang Won;Moon, Jong Sung;Kim, Jung Gyu;Sung, Ki Kwang;Kim, Hyun Min
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • The reactor internals shall be secured in safety and structural integrity under various vibrational loading conditions. Thus, U.S. NRC, Regulatory Guide 1.20 requires the evaluation for the reactor internals due to acoustic induced vibration including the response to the reactor coolant pump pressure pulsation. This paper suggests a methodology to develop an analytical model of the core support barrel accounting for the fluid around the structure and to analyze the responses to the pump pulsation loads using acoustic structure interaction analysis. The analysis results were compared with those of US Palo Verde 1 CVAP and showed a good agreement. Thus, it is expected that the suggested methodology could be an efficient way to evaluate the response of the core support barrel to the pump pulsation loads.

CHARACTERISTICS OF SELF-LEVELING BEHAVIOR OF DEBRIS BEDS IN A SERIES OF EXPERIMENTS

  • Cheng, Songbai;Yamano, Hidemasa;Suzuki, TYohru;Tobita, Yoshiharu;Nakamura, Yuya;Zhang, Bin;Matsumoto, Tatsuya;Morita, Koji
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.323-334
    • /
    • 2013
  • During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.

VHTR Construction Ripple Effect Analysis Using Inter-Industry Tables (산업연관분석을 통한 초고온가스로 건설 파급효과 분석)

  • Lee, Tae-Hoon;Lee, Ki-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.39-44
    • /
    • 2015
  • The VHTR (Very High Temperature gas-cooled nuclear Reactor) has been considered as a major heat source and the most safe generation IV type reactor for mass hydrogen production to prepare for the hydrogen economy era. The VHTR satisfies goals for the GIF (Generation IV International Forum) policy such as sustainablility, economics, reliability and proliferation resistance and physical protection, and safety. As a part of a VHTR economic analysis, we have studied the VHTR construction cost and operation and maintenance cost. However, it is somewhat difficult to expect the ripple effect on the whole industry due to the lack of information about Inter-industries relationship. In many case, the ripple effect are based on experts' knowledge or uncertain qualitative assumptions. As a result, we propose quantitative analysis techniques for ripple effects such as the production inducement effect, added value inducement effect, and employment inducement effect for VHTR 600MWt${\times}$4 modules construction and operation ripple effect based on NOAK (Nth Of A Kind). Because inducement effect values have been published annually, we predict inducement effect's relation function and estimated values including production inducement effect value, added value inducement effect value, and employment inducement effect value using time series and estimated values are verified with published inducement effects' value. This paper presents a new method for the ripple effect and preliminary ripple effect consequence using a time series analysis and inter-industry table. This ripple effect analysis techniques can be applied to effect expectation analysis as well as other type reactor's ripple effect analysis including VHTR for process heat.