• 제목/요약/키워드: Reactor safety

검색결과 1,240건 처리시간 0.021초

A Study of Neutronics Effects of the Spacer Grids in a Typical PWR via Monte Carlo Calculation

  • Tran, Xuan Bach;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.33-42
    • /
    • 2016
  • Spacer grids play an important role in maintaining the proper form of the fuel assembly structure and ensuring the safety of reactor core design. This study applies the Monte Carlo method to the analysis of the neutronics effects of spacer grids in a typical pressurized water reactor (PWR). The core problem used to analyze the neutronics effects of spacer grids is a modified version of Korea Advanced Institute of Science and Technology benchmark problem 1B, based on an Advanced Power Reactor 1400 (APR1400) core model. The spacer grids are modeled and added to this test problem in various ways. Then, by running MCNP5 for all cases of spacer grid modeling, some important numerical results, such as the effective multiplication factor, the spatial distributions of neutron flux, and its energy spectrum are obtained. The numerical results of each case of spacer grid modeling are analyzed and compared to assess which type has more advantages in accuracy of numerical results and effectiveness in terms of geometry building. The conclusion is that the most realistic modeling for Monte Carlo calculation is the "volume-preserving" streamlined heterogeneous spacer grids, but the "banded" dissolution spacer grids modeling is a more practical yet accurate model for routine (deterministic) analysis.

Electromagnetism Mechanism for Enhancing the Refueling Cycle Length of a WWER-1000

  • Poursalehi, Navid;Nejati-Zadeh, Mostafa;Minuchehr, Abdolhamid
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.43-53
    • /
    • 2017
  • Increasing the operation cycle length can be an important goal in the fuel reload design of a nuclear reactor core. In this research paper, a new optimization approach, electromagnetism mechanism (EM), is applied to the fuel arrangement design of the Bushehr WWER-1000 core. For this purpose, a neutronic solver has been developed for calculating the required parameters during the reload cycle of the reactor. In this package, two modules have been linked, including PARCS v2.7 and WIMS-5B codes, integrated in a solver for using in the fuel arrangement optimization operation. The first results of the prepared package, along with the cycle for the original pattern of Bushehr WWER-1000, are compared and verified according to the Final Safety Analysis Report and then the results of exploited EM linked with Purdue Advanced Reactor Core Simulator (PARCS) and Winfrith Improved Multigroup Scheme (WIMS) codes are reported for the loading pattern optimization. Totally, the numerical results of our loading pattern optimization indicate the power of the EM for this problem and also show the effective improvement of desired parameters for the gained semi-optimized core pattern in comparison to the designer scheme.

FROM THE DIRECT NUMERICAL SIMULATION TO SYSTEM CODES - PERSPECTIVE FOR THE MULTI-SCALE ANALYSIS OF LWR THERMALHYDRAULICS

  • Bestion, D.
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.608-619
    • /
    • 2010
  • A multi-scale analysis of water-cooled reactor thermalhydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermalhydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given.

Indefinite sustainability of passive residual heat removal system of small modular reactor using dry air cooling tower

  • Na, Min Wook;Shin, Doyoung;Park, Jae Hyung;Lee, Jeong Ik;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.964-974
    • /
    • 2020
  • The small modular reactors (SMRs) of the integrated pressurized water reactor (IPWR) type have been widely developed owing to their enhanced safety features. The SMR-IPWR adopts passive residual heat removal system (PRHRS) to extract residual heat from the core. Because the PRHRS removes the residual heat using the latent heat of the water stored in the emergency cooldown tank, the PRHRS gradually loses its cooling capacity after the stored water is depleted. A quick restoration of the power supply is expected infeasible under station blackout accident condition, so an advanced PRHRS is needed to ensure an extended grace period. In this study, an advanced design is proposed to indirectly incorporate a dry air cooling tower to the PRHRS through an intermediate loop called indefinite PRHRS. The feasibility of the indefinite PRHRS was assessed through a long-term transient simulation using the MARS-KS code. The indefinite PRHRS is expected to remove the residual heat without depleting the stored water. The effect of the environmental temperature on the indefinite PRHRS was confirmed by parametric analysis using comparative simulations with different environmental temperatures.

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar;Kim, Kyung Youn;Hur, Seop;Kim, Sung Joong;Kim, Jung Taek
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.532-548
    • /
    • 2021
  • Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.

Techno-economic assessment of a very small modular reactor (vSMR): A case study for the LINE city in Saudi Arabia

  • Salah Ud-Din Khan;Rawaiz Khan
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1244-1249
    • /
    • 2023
  • Recently, the Kingdom of Saudi Arabia (KSA) announced the development of first-of-a-kind(FOAK) and most advanced futuristic vertical city and named as 'The LINE'. The project will have zero carbon dioxide emissions and will be powered by clean energy sources. Therefore, a study was designed to understand which clean energy sources might be a better choice. Because of its nearly carbon-free footprint, nuclear energy may be a good choice. Nowadays, the development of very small modular reactors (vSMRs) is gaining attention due to many salient features such as cost efficiency and zero carbon emissions. These reactors are one step down to actual small modular reactors (SMRs) in terms of power and size. SMRs typically have a power range of 20 MWe to 300 MWe, while vSMRs have a power range of 1-20 MWe. Therefore, a study was conducted to discuss different vSMRs in terms of design, technology types, safety features, capabilities, potential, and economics. After conducting the comparative test and analysis, the fuel cycle modeling of optimal and suitable reactor was calculated. Furthermore, the levelized unit cost of electricity for each reactor was compared to determine the most suitable vSMR, which is then compared other generation SMRs to evaluate the cost variations per MWe in terms of size and operation. The main objective of the research was to identify the most cost effective and simple vSMR that can be easily installed and deployed.

Dynamic data validation and reconciliation for improving the detection of sodium leakage in a sodium-cooled fast reactor

  • Sangjun Park;Jongin Yang;Jewhan Lee;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1528-1539
    • /
    • 2023
  • Since the leakage of sodium in an SFR (sodium-cooled fast reactor) causes an explosion upon reaction with air and water, sodium leakages represent an important safety issue. In this study, a novel technique for improving the reliability of sodium leakage detection applying DDVR (dynamic data validation and reconciliation) is proposed and verified to resolve this technical issue. DDVR is an approach that aims to improve the accuracy of a target system in a dynamic state by minimizing random errors, such as from the uncertainty of instruments and the surrounding environment, and by eliminating gross errors, such as instrument failure, miscalibration, or aging, using the spatial redundancy of measurements in a physical model and the reliability information of the instruments. DDVR also makes it possible to estimate the state of unmeasured points. To validate this approach for supporting sodium leakage detection, this study applies experimental data from a sodium leakage detection experiment performed by the Korea Atomic Energy Research Institute. The validation results show that the reliability of sodium leakage detection is improved by cooperation between DDVR and hardware measurements. Based on these findings, technology integrating software and hardware approaches is suggested to improve the reliability of sodium leakage detection by presenting the expected true state of the system.

Stability and nonlinear vibration of a fuel rod in axial flow with geometric nonlinearity and thermal expansion

  • Yu Zhang;Pengzhou Li;Hongwei Qiao
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4295-4306
    • /
    • 2023
  • The vibration of fuel rods in axial flow is a universally recognized issue within both engineering and academic communities due to its significant importance in ensuring structural safety. This paper aims to thoroughly investigate the stability and nonlinear vibration of a fuel rod subjected to axial flow in a newly designed high temperature gas cooled reactor. Considering the possible presence of thermal expansion and large deformation in practical scenarios, the thermal effect and geometric nonlinearity are modeled using the von Karman equation. By applying Hamilton's principle, we derive the comprehensive governing equation for this fluid-structure interaction system, which incorporates the quadratic nonlinear stiffness. To establish a connection between the fluid and structure aspects, we utilize the Galerkin method to solve the perturbation potential function, while employing mode expansion techniques associated with the structural analysis. Following convergence and validation analyses, we examine the stability of the structure under various conditions in detail, and also investigate the bifurcation behavior concerning the buckling amplitude and flow velocity. The findings from this research enhance the understanding of the underlying physics governing fuel rod behavior in axial flow under severe yet practical conditions, while providing valuable guidance for reactor design.

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.