• Title/Summary/Keyword: Reactor safety

Search Result 1,291, Processing Time 0.03 seconds

Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

  • Kim, Wonkyeong;Lee, Hyun Chul;Pyeon, Cheol Ho;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.304-317
    • /
    • 2016
  • An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcrofte-Walton type accelerator, which generates the external neutron source by deuteriu-metritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

Self-pressurization analysis of the natural circulation integral nuclear reactor using a new dynamic model

  • Pilehvar, Ali Farsoon;Esteki, Mohammad Hossein;Hedayat, Afshin;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.654-664
    • /
    • 2018
  • Self-pressurization analysis of the natural circulation integral nuclear reactor through a new dynamic model is studied. Unlike conventional pressurized water reactors, this reactor type controls the system pressure using saturated coolant water in the steam dome at the top of the pressure vessel. Self-pressurization model is developed based on conservation of mass, volume, and energy by predicting the condensation that occurs in the steam dome and the flashing inside the chimney using the partial differential equation. A simple but functional model is adopted for the steam generator. The obtained results indicate that the variable measurement is consistent with design data and that this new model is able to predict the dynamics of the reactor in different situations. It is revealed that flashing and condensation power are in direct relation with the stability of the system pressure, without which pressure convergence cannot be established.

Verification and improvement of dynamic motion model in MARS for marine reactor thermal-hydraulic analysis under ocean condition

  • Beom, Hee-Kwan;Kim, Geon-Woo;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1231-1240
    • /
    • 2019
  • Unlike land-based nuclear power plants, a marine or floating reactor is affected by external forces due to ocean conditions. These external forces can cause additional accelerations and affect each system and equipment of the marine reactor. Therefore, in designing a marine reactor and evaluating its performance and stability, a thermal hydraulic safety analysis code is necessary to consider the thermal hydrodynamic effects of ship motion. MARS, which is a reactor system analysis code, includes a dynamic motion model that can simulate the thermal-hydraulic phenomena under three-dimensional motion by calculating the body force term included in the momentum equation. In this study, it was verified that the dynamic motion model can simulate fluid motion with reasonable accuracy using conceptual problems. In addition, two modifications were made to the dynamic motion model; first, a user-supplied table to simulate a realistic ship motion was implemented, and second, the flow regime map determination algorithm was improved by calculating the volume inclination information at every time step if the dynamic motion model was activated. With these modifications, MARS could simulate the thermal-hydraulic phenomena under ocean motion more realistically.

Evaluation of neutronics parameters during RSG-GAS commissioning by using Monte Carlo code

  • Surian Pinem;Wahid Luthfi;Peng Hong Liem;Donny Hartanto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1775-1782
    • /
    • 2023
  • Several reactor physics commissioning experiments were conducted to obtain the neutronic parameters at the beginning of the G.A. Siwabessy Multi-purpose Reactor (RSG-GAS) operation. These parameters are essential for the reactor to safety operate. Leveraging the experimental data, this study evaluated the calculated core reactivity, control rod reactivity worth, integral control rod reactivity curve, and fuel reactivity. Calculations were carried out with Serpent 2 code using the latest neutron cross-section data ENDF/B-VIII.0. The criticality calculations were carried out for the RSG-GAS first core up to the third core configuration, which has been done experimentally during these commissioning periods. The excess reactivity for the second and third cores showed a difference of 510.97 pcm and 253.23 pcm to the experiment data. The calculated integral reactivity of the control rod has an error of less than 1.0% compared to the experimental data. The calculated fuel reactivity value is consistent with the measured data, with a maximum error of 2.12%. Therefore, it can be concluded that the RSG-GAS reactor core model is in good agreement to reproduce excess reactivity, control rod worth, and fuel element reactivity.

Selection of Measuring Sensors for Reactor Vessel Internals Comprehensive Vibration Assessment Program in Advanced Power Reactor 1400 (APR1400 원자로 내부구조물 종합진동평가 측정센서 선정)

  • Ko, Do-Young;Lee, Jae-Gon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.433-438
    • /
    • 2010
  • Reactor vessel internals comprehensive vibration assessment program(RVI CVAP) is one of the necessary tests to ensure the safety of nuclear power plants. RVI CVAP of U.S. Nuclear Regulatory Commission Regulatory Guide 1.20(U.S. NRC R.G. 1.20) consists of the analysis, measurement, and inspection. One of the core technologies of the measurement program for RVI CVAP is to select suitable sensors. We analyzed RVI design data of Palo Verde nuclear generating station(U.S.) and Yonggwang nuclear generating station(Korea) and investigated measuring sensors used in both of them; moreover, we investigated sensors used for measurement of RVI CVAP for the last 20 years throughout the world. Based on these results, we selected the most suitable sensors for RVI CVAP in Advanced Power Reactor 1400(APR1400).

  • PDF