• Title/Summary/Keyword: Reactor performance

Search Result 1,289, Processing Time 0.024 seconds

The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel (실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구)

  • Choi, Jae-Hyung;Park, Yong-Beom;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • Esterification of free fatty acid with methanol to biodiesel was investigated in a batch reactor using various solid acid catalysts, such as polymer cation-exchanged resins with sulfuric acid functional group(Amberlyst-15, Dowex 50Wx8), acidic ionic liquids (ILs)-modified silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$) and grafted silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-R-SO_3H$, $SiO_2-R-SO_2Cl$). The effects of reaction time, temperature, reactant concentration(molar ratio of methanol to oleic acid), and catalyst amount were studied. Allylimidazolium-based ILs on modified silica gels were superior to other tested solid acid catalysts. Especially, the performance of $SiO_2-[ASBI][HSO_4]$ (immobilized by grafting of 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate on silica gel) was better than that of a widely known Amberlyst-15 catalyst at the same reaction conditions. A high conversion yield of 96% was achieved in the esterification reaction of the simulated cooking oil at 353 K for 2 h. The high catalytic activity of $SiO_2-[ASBI][HSO_4]$ was attributed to the presence of strong Brønsted acid sites from the immobilized functional groups. The catalyst was recovered and the biodiesel product was separated by simple processes such as decantation and filtration.

Numerical Simulation of CNTs Based Solid State Hydrogen Storage System (탄소나노튜브 기반의 고체수소저장시스템에 관한 전산해석)

  • Kim, Sang-Gon;HwangBo, Chi-Hyung;Yu, Chul Hee;Nahm, Kee-Suk;Im, Yeon-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.644-651
    • /
    • 2011
  • Storing hydrogen in solid state hydride is one of the best promising methods for the future hydrogen economy. The total performance of such systems depends on the rate at which the amount of mass and heat migration is supplied to solid hydride. Therefore, an accurate modeling of the heat and mass transfer is of prime importance in optimizing the design of such systems. In this work, Hydrogen storage in Pt-CNTs hydrogen reactor has been intensively investigated by solving 2 dimensional mathematical models. Using a CFD computer software, systematic studies have been performed to elucidate the effect of heat and mass transfer during hydrogen charging periods. It was revealed that the optimized design of hydrogen storage vessel can prevent the increase of system temperature and the charging time due to the convective cooling effects inside the vessels at even high charging pressure. Because none has reported the critical issues of heat and mass transfer for CNT based hydrogen storage system, this work can support the first insight of the optimal design for solid state hydrogen storage system based on CNT in the near future.

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

Removal of Ethylene Over KMnO4/Silica-alumina: Effect of Synthesis Methods and Reaction Temperatures (KMnO4/실리카-알루미나 상에서 에틸렌 제거: 합성 방법과 반응온도의 영향)

  • Cho, Min-Whee;Yoon, Songhun;Park, Yong-Ki;Choi, Won Choon;Kim, Hee Young;Park, Seungkyu;Lee, Chul Wee
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.407-410
    • /
    • 2009
  • 18~19 wt% $KMnO_4$/$SiO_2-Al_2O_3$ with Si/Al = 1/5 and 1/10, and 20 wt% $KMnO_4$/$Al_2O_3$ were prepared by solvent evaporation method. Catalytic activity of ethylene abatement over those samples were evaluated and compared under the conditions of GHSV $1125h^{-1}$, ethylene gas (ethylene 0.2%, air 99.8%, relative humidity 50%) at 30, 40, 60 and $120^{\circ}C$ using a fixed-bed reactor. $KMnO_4$/$SiO_2-Al_2O_3$ was showed better performance than $KMnO_4$/$Al_2O_3$ by 170~210% at 30, $40^{\circ}C$, and by 60% at 60, $150^{\circ}C$, respectively.

Quantitative Analysis of Ergosterol as a Biomarker of Mold-contaminated Foods Using the Enzyme Biosensor (효소 바이오센서를 이용한 식품의 곰팡이 오염 지표물질인 Ergosterol 정량분석)

  • Kim, Mi-Kyeong;Kim, Jong-Won;Kim, Mee-Ra
    • Korean journal of food and cookery science
    • /
    • v.25 no.2
    • /
    • pp.252-259
    • /
    • 2009
  • Ergosterol is the significant component of the cell wall of fungi. Its presence is regarded as evidence of fungi contamination in grain and other foods. Many studies on ergosterol detection have been carried out using chemical methods, but those methods required complicated pre-treatments and long analysis times. In this study, an amperometric biosensor was developed for fast and precise ergosterol detection. The biosensor system used the electron transfer of hydrogen peroxide produced from the reaction of ergosterol with cholesterol oxidase. The biosensor system consisted of a peristaltic pump, a syringe loading sample injector, an enzyme reactor, a fabricated flow-through cell containing a working electrode, a reference electrode and a counter electrode, and a potentiostat/recorder. The working electrode was prepared by coating modified multi-wall carbon nanotube (MWNT) on glassy carbon electrode. The $MWNT-NH_2$ coated glassy carbon electrode linearly responded to hydrogen peroxide in the range of $1{\times}10^{-5}{\sim}8{\times}10^{-5}$ M with a detection limit of $10^{-7}$ M in the basic performance test. The currents produced from the ergosterol biosensor showed the linearity in a range from $1.0{\times}10^{-6}$ M to $1.0{\times}10^{-5}$ M ergosterol.

Development of Backup Calculation System for a Nuclear Steam Supply System Thermal-Hydraulic Model ARTS (Advanced Real-time Thermal Hydraulic Simulation) of the W/H Type NPP (W/H형 원전 시뮬레이터용 핵 증기공급 계통 열수력모델 ARTS(Advanced Real-time Thermal Hydraulic Simulation)의 보조계산체계 개발)

  • 서재승;전규동
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • The NSSS (Nuclear Steam Supply System) thermal-hydraulic programs adopted in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited compulsational capability at that time, they usually used very simplified physical models for a real-time simulation of NSSS thermal-hydraulic transients, which entails inaccurate results and, thus, the possibility of so-called "negative training", especially for complicated two-phase flows in the reactor coolant system. In resolve the problem, KEPRI developed a realistic NSSS T/H program ARTS which was based on the RETRAN-3D code for the improvement of the Nuclear Power Plant full-scope simulator. The ARTS (based on the RETRAN-3D code) guarantees the real-time calculations of almost all transients and ensures the robustness of simulations. However, there is some possibility of failing to calculate in the case of large break loss of coolant accident (LBLOCA) and low-pressure low-flow transient. In this case, the backup calculation system cover automatically the ARTS. The backup calculation system was expected to provide substantially more accurate predictions in the analysis of the system transients involving LBLOCA. The results were reasonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with FSAR and the AMSI/ANS-3.5-1998 simulator software performance criteria.

Investigation on the Allowable Transient Power Levels to Maintain the Mechanical Integrity of the 17$\times$17 KOFA Fuel Rod During the ANS Conditions I and II (ANS과도조건 I 및 II에서 17x17 KOFA 핵연료봉의 기계적 건전성이 유지되는 과도상태 허용 출력준위에 관한 연구)

  • Lee, Chan-Bock;Kim, Ki-Hang;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.119-125
    • /
    • 1994
  • Transient power level of the fuel rod is one of the key parameters for the transient fuel behavior. Through the analysis of the fuel performance data bases and sensitivity analyses of such parameters as rod power history, fast neutron flux, fuel enrichment and cycle length, which can affect the transient fuel behavior, a methodology generally applicable to find the allowable transient power level during the ANS Conditions I and II below which the mechanical integrity of the fuel rod is maintained was derived, and allowable transient power levels for the 17$\times$17 KOFA fuel rod have been determined as a function of the burnup. With the introduction of this methodology, design analysis of the transient fuel behavior currently being calculated every cycle can be replaced by the simple check of the peak transient power level achievable during the cycle, and an operational flexibility of the reactor can be obtained by allowing higher transient power level up to 689.5 w/cm at low burnup range than current maximum allowable transient power level, 591 w/cm for the 17$\times$17 KOFA fuel.

  • PDF

Synthesis of Functional Lipid from Glyceryl Monooleate and Conjugated Linoleic Acid by Enzymatic Reaction (Glyceryl Monooleate와 Conjugated Linoleic Acid로부터 효소적 반응을 이용한 기능성 유지 합성)

  • Jeon, Mi-Sun;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.1062-1068
    • /
    • 2009
  • Diacylglycerol (DAG) were synthesized by enzymatic esterification of glyceryl monooleate (GMO) and conjugated linoleic acid (CLA) in a shaking water bath. The reaction was catalyzed by Lipozyme TLIM (immobilized lipase from Thermomyces lanuginosa). Effects of reaction time, molar ratio, enzyme road and molecular sieves were studied. Results of normal-phase high performance liquid chromatography (NP-HPLC) analysis were performed. At 1:1, 2:1 and 3:1 (GMO : CLA) molar ratio and Lipozyme TLIM of 20% amount, DAG were produced in 42.6, 54.4 and 54.6 area% in 1 hr, respectively. When different Lipozyme TLIM amounts (2, 5, 10, 20%) were used with 2:1 (GMO : CLA) molar ratio, DAG were produced 21.4 (24 hr), 51.7 (12 hr), 56.2 (6 hr) and 54.4 (1 hr) area%, respectively. The reaction in the absence of molecular sieves increased DAG contents. The maximum DAG concentration conditions were obtained with molar ratio of 2:1 (GMO : CLA), lipase concentration of 10% (of substrate), 10% molecular sieves and reaction time of 6 hours at 55$^{\circ}C$. Under this reaction condition, produced DAG-rich oil was composed of 69 area% DAG, 7.9 area% TAG, 2 area% FFA, and 21.1 area% MAG.

A Study on the Method for the Removal of Radioactive Corrosion Produce Using Permanent and Electric Magnets

  • Kong Tae-Young;Song Min-Chul;Lee Kun-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • The removal of radioactive corrosion products from the reactor coolant through a magnetic filter system is one of the many approaches being investigated as a means to reduce radiation sources and exposures to the operational and maintenance personnel in a nuclear power plant. Many research activities in water chemistry, therefore, have been performed to provide a filtration system with high reliability and feasibility and are still in process. In this study, it was devised the magnetic filter system with permanent and electric magnets to remove the corrosion products in the coolant stream taking an advantage of the magnetic properties of corrosion particles. Permanent magnets were used for separation of corrosion products and electric magnets were utilized for flocculation of colloidal particles to increase in their size. Experiments using only permanent magnets, in the previous study, displayed the satisfactory outcome of filtering corrosion products and indicated that the removal efficiency was more than 90 $\%$ for above 5 $\mu$m particles. Experiments using electric magnets also showed the good performance of flocculation without chemical agents and exhibited that most corrosion particles were flocculated into larger aggregates about 5 $\mu$m and over in diameter. It is, thus, expected that the magnetic filter system with the arrangement of permanent and electric magnets will be an effective way for the removal of radioactive corrosion products with considerably high removal efficiency.

  • PDF

Evaluation of the Reducing Efficiency of Vertical and Horizontal Wetland Using Intermittent Flow System (간헐식 흐름방식을 활용한 수직·수평 습지의 정화효율 평가)

  • Joo, Kwang Jin;Lee, Dong Min;Kim, Ki Jung;Cho, Yong Chul;Jang, Gwang Hyeon;Choi, I Song;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.142-148
    • /
    • 2017
  • Nitrogen and phosphorus are key factors in causing eutrophication of water body. In this study, ceramics media was selected to increase the removal efficiency of nitrogen and phosphorus. We designed vertical, horizontal flow constructed wetlands to create aerobic and anaerobic flow conditions by using the media, then proceeded to performance evaluations after acrylic reactors were produced. In the case of vertical and horizontal flow constructed wetlands, we measured oxygen concentrations to evaluate aerobic and anaerobic conditions. we got the result of 2.7 mg/L in the aerobic condition, N.D in the anaerobic condition respectively, which suited our purpose. The result of the combined vertical and horizontal flow condition showed that the removal efficiency of SS was 94%, 91%, 61% at 140 min, 80 min, 60 min of running times, respectively, and the removal efficiency of T-P was 84%, 71%, 63% during each running time. In case of T-N, the removal efficiency was 63%, 49%, 42% during each running time. We found that the reactor exerted better removal efficiency when in the short time compared to 12 - 24 hr residence time of existing wetlands. In this study, we conducted experiments to explore functional effects after applying combined vertical and horizontal flow methods in the field. Further study will be carried out to identify its mechanism and administrative perspective.