• Title/Summary/Keyword: Reactor monitoring

Search Result 204, Processing Time 0.039 seconds

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.

Selection and Analysis of Operating Parameters for Condition Monitoring of Emergency Diesel Generator at Nuclear Power Plant (원자력발전소 비상디젤발전기 상태감시를 위한 운전인자 선정에 관한 연구)

  • Park, J.H.;Choi, K.H.;Lee, S.G.;Park, J.E.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.3-8
    • /
    • 2007
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear reactor at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the plant safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to maintain and monitor and forecast the reliability level of diesel generator. To do this kind of diesel generator condition monitoring we reviewed several operating factors and history of the wolsong unit 3 diesel generator and selected the proper conditioning monitoring operating factors.

  • PDF

Development of Ceramic Humidity Sensor for the Korean Next Generation Reactor

  • Lee, Na-Young;Hwang, Il-Soon;Yoo, Han-Ill;Song, Chang-Rock
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.183-190
    • /
    • 1996
  • Leak-before-break(LBB) approach has been shown to be both cost and risk effective by reducing maintenance cost and occupational exposure when applied to high energy piping in nuclear power plants. For Korean Next Generation Reactor(KNGR) development, LBB is considered for the Main Steam Line(MSL) piping inside containment. Unlike the reactor coolant piping leakages which can be detected by particulate and gaseous radiation monitoring, main steam line leak detection systems must be based on principles that do not involve radioactivity. Ceramics are widely used as humidity sensor materials which can be further developed for nuclear applications. In this paper, we describe the progress in the development of ceramic humidity sensors for use with the main steam lines of KNGR.

  • PDF

Neutron Noise Analysis in Ulchin Nuclear Unit 1 & 2 (울진 1, 2호기의 중성자 잡음신호 분석)

  • 김태룡;박진호;고병무;배용채
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.582-589
    • /
    • 1998
  • This paper presents the analysis results of ex-core and in-core neutron noise, acceleration signals and pressure fluctuation measured at Ulchin Nuclear Unit 1 & 2 to identify and monitor the reactor internals vibration including fuel motion. A phase separation algorithm developed by authors was applied to the neutron noises to clearly identify the reactor internals vibratory motion. The beam mode frequency of the core support barrel was identified to be 8Hz and the shell mode to be 20Hz. The first frequency of the fuel assembly was also found to be 3Hz, while first two acoustic frequencies of the primary coolant system were 6 and 17.5Hz. By monitoring and analyzing these frequencies periodically, it is possible to diagnose the operating condition of reactor internals and to provide an early detection of faults for the predictive maintenance.

  • PDF

Inspection of Calandria Reactor Area of Wolsung NPP using Thermal Infrared and CCD Images

  • Cho, Jai-Wan;Kim, Chang-Hoi;Seo, Yong-Chil;Park, Young-Soo;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.96.4-96
    • /
    • 2002
  • Thermal infrared imaging is a highly promising technology for condition monitoring and predictive maintenance of electronic, electrical and mechanical elements in nuclear power plants. However, conventional low-cost infrared imaging systems suffer from poor spatial resolution compared to commercial CCD cameras. This paper describes an approach to enhance inspection performances for calandria reactor area of Wolsung nuclear power plant through the technique of superimposing thermal infrared image into real CCD image. In the occurrence of thermal abnormalities on observation points and areas of calandria reactor area, unusual hot image taken from thermal infrared camera is mapped upon re...

  • PDF

DESIGN OF DELAY-TOLERANT CONTROLLER FOR REMOTE CONTROL OF NUCLEAR REACTOR POWER

  • Lee, Yoon-Joon;Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • One of main concepts involved in regional small nuclear reactors is unmanned remote control. Internet-based virtual private networks provide environments for the remote monitoring and control of geographically-dispersed systems, and with the advances in communication technologies, the potential of networks for real time control and automation becomes enormous. However, networked control has some problems. The most critical is delay in signal transmission, which degrades system stability and performance. Therefore, a networked control system should be designed to account for delay. This paper proposes some design approaches for a delay-tolerant system that can guarantee predetermined stability margins and performance. To accomplish this, the reactor plant is modeled with consideration of uncertainties. With this model, three kinds of controllers are developed using different methods. The designed systems are compared with respect to stability and performance, and a second-order controller designed using the table lookup method was found to give the most satisfactory results.

Development of a Flow Injection Analysis Technique for On-line Monitoring of Xylitol Concentrations (자일리톨 농도의 온라인 모니터링을 위한 흐름주입분석기술 개발)

  • 이종일
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.339-344
    • /
    • 2002
  • Flow injection analysis technique for monitoring of xylitol concentrations in biological processes has been developed using xylitol oxidase (XYO) immobilized on VA-Epoxy Biosynth carrier. The immobilized XYO cartridge has been integrated into a FIA system with an oxygen electrode and systematically investigated with regards to the factors which can affect the activity of the immobilized XYO, such as pH, temperature, salt concentration etc. The activity of the immobilized XYO increased with the temperature ($19.0 - 29.0^{circ}C$) and sample injection volume ($75-250\muL$) and molarity of potassium phosphate buffer (0.1-1 M), but it reached the highest value at pH 8.5. The XYO-FIA system has been also applied for on-line monitoring of xylitol concentrations in a reactor and showed good operational stability and agreement with off-line data measured with HPLC.

Improved Self Plasma-Optical Emission Spectroscopy for In-situ Plasma Process Monitoring (실시간 플라즈마공정 모니터링을 위한 Self Plasma-Optical Emission Spectroscopy 성능 향상)

  • Jo, Kyung Jae;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.75-78
    • /
    • 2017
  • We reports improved monitoring performance of Self plasma-optical emission spectroscopy (SP-OES) by augmenting a by-pass tube to a conventional straight (or single) tube type self plasma reactor. SP-OES has been used as a tool for the monitoring of plasma chemistry indirectly in plasma process system. The benefits of SP-OES are low cost and easy installation, but some semiconductor industries who adopted commercialized SP-OES product experiencing less sensitivity and slow sensor response. OH out-gas chemistry monitoring was performed to have a direct comparison of a conventional single type tube and a by-pass type tube, and fluid dynamic simulation on the improved hardware design was also followed. It is observed faster pumping out of OH from the chamber in the by-pass type SP-OES.

  • PDF

Corrosion of Containment Alloys in Molten Salt Reactors and the Prospect of Online Monitoring

  • Hartmann, Thomas;Paviet, Patricia
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • The aim of this review is to communicate some essential knowledge of the underlying mechanism of the corrosion of structural containment alloys during molten salt reactor operation in the context of prospective online monitoring in future MSR installations. The formation of metal halide species and the progression of their concentration in the molten salt do reflect containment corrosion, tracing the depletion of alloying metals at the alloy salt interface will assure safe conditions during reactor operation. Even though the progress of alloying metal halides concentrations in the molten salt do strongly understate actual corrosion rates, their prospective 1st order kinetics followed by near-linearly increase is attributed to homogeneous matrix corrosion. The service life of the structural containment alloy is derived from homogeneous matrix corrosion and near-surface void formation but less so from intergranular cracking (IGC) and pitting corrosion. Online monitoring of corrosion species is of particular interest for molten chloride systems since besides the expected formation of chromium chloride species CrCl2 and CrCl3, other metal chloride species such as FeCl2, FeCl3, MoCl2, MnCl2 and NiCl2 will form, depending on the selected structural alloy. The metal chloride concentrations should follow, after an incubation period of about 10,000 hours, a linear projection with a positive slope and a steady increase of < 1 ppm per day. During the incubation period, metal concentration show 1st order kinetics and increasing linearly with time1/2. Ideally, a linear increase reflects homogeneous matrix corrosion, while a sharp increase in the metal chloride concentration could set a warning flag for potential material failure within the projected service life, e.g. as result of intergranular cracking or pitting corrosion. Continuous monitoring of metal chloride concentrations can therefore provide direct information about the mechanism of the ongoing corrosion scenario and offer valuable information for a timely warning of prospective material failure.

Position Tracking of Underwater Robot for Nuclear Reactor Inspection using Color Information (색상정보를 이용한 원자로 육안검사용 수중로봇의 위치 추적)

  • 조재완;김창회;서용칠;최영수;김승호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2259-2262
    • /
    • 2003
  • This paper describes visual tracking procedure of the underwater mobile robot for nuclear reactor vessel inspection, which is required to find the foreign objects such as loose parts. The yellowish underwater robot body tend to present a big contrast to boron solute cold water of nuclear reactor vessel, tinged with indigo by Cerenkov effect. In this paper, we have found and tracked the positions of underwater mobile robot using the two color informations, yellow and indigo. The center coordinates extraction procedures is as follows. The first step is to segment the underwater robot body to cold water with indigo background. From the RGB color components of the entire monitoring image taken with the color CCD camera, we have selected the red color component. In the selected red image, we extracted the positions of the underwater mobile robot using the following process sequences: binarization labelling, and centroid extraction techniques. In the experiment carried out at the Youngkwang unit 5 nuclear reactor vessel, we have tracked the center positions of the underwater robot submerged near the cold leg and the hot leg way, which is fathomed to 10m deep in depth.

  • PDF