• 제목/요약/키워드: Reactor hall

검색결과 21건 처리시간 0.024초

Study of atmosphere parameters of the IVV-2M reactor hall

  • M.E. Vasyanovich;M.V. Zhukovsky;E.I. Nazarov;I.M. Russkikh
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3935-3939
    • /
    • 2023
  • The paper presents the results of a study of radioactive noble gases and from decay products in the atmosphere of the reactor hall of the research nuclear reactor IVV-2M. The distribution of short-lived 88Rb and 138Cs activity by sizes of aerosol particles was measured in the range of 0.5-1000 nm. It is shown that radioactive aerosols are characterized by three main modes with AMTD 2-3 nm, 7-15 nm and 400 nm. About 70% of aerosol activity is due to 88Rb. The equilibrium factor between 88Kr and 88Rb is 0.2 ± 0.1. The total concentration of aerosols particles was measured using an aerosol diffusion spectrometer. The value of unattached fraction of radioactive aerosols in the atmosphere of reactor hall IVV2M was f = 0.15-0.25 at the average total aerosol particles concentration from 20,000 cm3 to 53,000 cm3.

Using RESRAD-BUILD for Potential Radiation Dose Estimation the Korea Research Reactor-1 When It Opens to the Public as a Memorial Hall

  • Lee, Sangbok;Yoon, Yongsu;Kim, Sungchul
    • International Journal of Contents
    • /
    • 제16권2호
    • /
    • pp.102-108
    • /
    • 2020
  • The purpose of this study was to estimate and analyze the potential radiation dose that the future visitors and the cleaning staff will be exposed to when the KRR-1 reactor is converted into a memorial hall. The radiation doses were estimated using the RESRAD-BUILD software, where case, building, receptor, shielding, and source parameters were applied as the input data. Also, the basic data for the assessment of the radiation doses were determined in an indirect manner using the data on the waste generated during the decommissioning process of the reactor. The assessment results indicate that the potential radiation dose to the visitors and the cleaning staff will be less than 1 mSv, the annual dose limit for the general public. However, if anyone for a significant period of time is close to the reactor, the overall dose will increase. The radiation dose for the future visitors and the cleaning staff was determined to be lower than the annual dose limit for the general public. Given such a risk, systematic measures, such as periodic monitoring or limiting hours, are imperative.

Air Leakage Analysis of Research Reactor HANARO Building in Typhoon Condition for the Nuclear Emergency Preparedness

  • Lee, Goanyup;Lee, Haecho;Kim, Bongseok;Kim, Jongsoo;Choi, Pyungkyu
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.354-358
    • /
    • 2016
  • Background: To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition Materials and Methods: MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. Results and Discussion: It was found that the leak rate is $0.1%{\cdot}day^{-1}$ of air, $0.004%{\cdot}day^{-1}$ of noble gas and $3.7{\times}10^{-5}%{\cdot}day^{-1}$ of aerosol during typhoon passing. The air leak rate of $0.1%{\cdot}day^{-1}$ can be converted into $1.36m^3{\cdot}hr^{-1}$, but the design leak rate in HANARO safety analysis report was considered as $600m^3{\cdot}hr^{-1}$ under the condition of $20m{\cdot}sec^{-1}$ wind speed outside of the building by typhoon. Conclusion: Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor.

하나로 냉중성자 유도관 시스템을 위한 인파일 플러그 및 주개폐기의 설계 (Design of the In-pile Plug Assembly and the Primary Shutter for the Neutron Guide System at HANARO)

  • 신진원;조영갑;조상진;류정수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1585-1589
    • /
    • 2007
  • The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the mechanical design of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  • PDF

하나로의 액체 폐기물 발생 현황 및 저감 대책 (A study on decreasing the liquid waste and the liquid waste production status in HANARO)

  • 강태진;황승렬;최호영
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.135-140
    • /
    • 2003
  • 1996년부터 2002년까지 하나로의 출력 운전 중 발생한 액체 폐기물의 양을 조사, 정리하고 원자로 출력량과의 상관 관계를 비교하였다. 이 기간동안 발생한 폐기물량 및 처리비용은 각각 $263,530{\ell}$, 8,169만원이었으며 출력량 대비 폐기물 발생량 및 처리비용은 각각 $11.38{\ell}/MWD$, 157원/MWD이다. 폐기물 저감 대책은 원자로 홀 내에서 수행되는 보수 작업 및 실험 공정을 개선하여 저감하였다.

  • PDF

An Analysis of Shielding Design of TRIGA Mark-II Reactor

  • Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.185-197
    • /
    • 1971
  • 1950년대의 미국 General Atomic사에서 열출력 100 kw로 설계, 제작하여 1962년 3월에 건조완료한 TRIGA Mark-II원자로는 1969년 7월에 250 kw로 출력 증강되었으나 방사선차폐는 보강되지 않았다. 본 논문에서의 계산에 의하면 출력 증강후 현재의 차폐물로도 중성자에 대하여는 확실히 안전하지만 Gamma선에 대해서는 위험하다는 것이 판명되었다. 원자로의 구조와 출입인 및 실험종사자들의 위치로 보아 차폐물의 안전도 검토는 수평방향에 한하였고, 또 정확을 기하기 위하여 중성자와 Gamma선의 투과문제를 나누어 검토하였다. 이를 근거로 하여 이론적인 측면에서 본 콘크리트의 보강을 요하는 두께도 산출하였다.

  • PDF

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.49-54
    • /
    • 2002
  • HANARO, 30 MW of research reactor, was installed at the depth of 13m in an open pool. The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the cote. The rest, $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to prevent the radiated gas from being lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection, and increased the radiation lovel on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2 m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated at a higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated by Visual Basic Program. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss increased. And it was verified that the radiation level above was reduced mote safely by increasing the capacity of heater.

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 2001
  • HANARO, 30MW of research reactor, was installed at the depth of 13m of open pool, The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the core. The rest $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to protect that the radiated gas was lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection and increased the radiation level on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated with higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss was increased. And it was verified that the radiation level above was reduced more safely by increasing the capacity of heater.

  • PDF

Microbial Communities of Activated Sludge Performing Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose

  • Jeon, Che-Ok;Seung, Han-Woo;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.385-393
    • /
    • 2003
  • Microbial communities were analyzed in an anaerobic/aerobic sequencing batch reactor (SBR) fed with glucose as a sole carbon source. Scanning electron microscopy (SEM) showed that tetrad or cuboidal packet bacteria dominated the microbial sludge. Quinone, slot hybridization, and 165 rRNA gene sequencing analyses showed that the Proteobacteria beta subclass and the Actinobacteria group were the main microbial species in the SBR sludge. However, according to transmission electron microscopy (TEM), the packet bacteria did not contain polyphosphate granules or glycogen inclusions, but only separate coccus-shaped bacteria contained these, suggesting that coccus-shaped bacteria accumulated polyphosphate directly and the packet bacteria played other role in the enhanced biological phosphorus removal (EBPR). Based on previous reports, the Actinobacteria group and the Proteobacteria beta subclass were very likely responsible for acid formation and polyphosphate accumulation, respectively, and their cooperation achieved the EBPR in the SBR operation which was supplied with glucose.