• Title/Summary/Keyword: Reactor coolant pumps

Search Result 38, Processing Time 0.024 seconds

Performance Evaluation of a Main Coolant Pump for the Modular Nuclear Reactor by Computational Fluid Dynamics (전산해석에 의한 일체형 원자로용 주냉각재 펌프의 성능분석)

  • Yoon Eui-Soo;Oh Hyoung-Woo;Park Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.818-824
    • /
    • 2006
  • The hydrodynamic performance analysis of an axial-flow main coolant pump for the modular nuclear reactor has been carried out using a commercial computational fluid dynamics (CFD) software. The prediction capability of the CFD software adopted in the present study was validated in comparison with the experimental data. Predicted performance curves agree satisfactorily well with the experimental results for the main coolant pump over the normal operating range. π Ie prediction method presented herein can be used effectively as a tool for the hydrodynamic design optimization and assist the understanding of the operational characteristics of general purpose axial-flow pumps.

Experimental and numerical investigation on the pressure pulsation in reactor coolant pumps under different inflow conditions

  • Song Huang;Yu Song;Junlian Yin;Rui Xu;Dezhong Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1310-1323
    • /
    • 2023
  • A reactor coolant pump (RCP) is essential for transporting coolant in the primary loop of pressurized water reactors. In the advanced passive reactor, the absence of a long pipeline between the steam generator and RCP serves as a transition section, resulting in a non-uniform flow field at the pump inlet. Therefore, the characteristics of the pump should be investigated under non-uniform flow to determine its influence on the pump. In this study, the pressure pulsation characteristics were examined in the time and frequency domains, and the sources of low-frequency and high-amplitude signals were analyzed using wavelet coherence analysis and numerical simulation. From computational fluid dynamics (CFD) results, non-uniform inflow has a great effect on the flow structures in the pump's inlet. The pressure pulsation in the pump at the rated flow increased by 78-128.7% under the non-uniform inflow condition in comparison with that observed under the uniform inflow condition. Furthermore, a low-frequency signal with a high amplitude was observed, whose energy increased significantly under non-uniform flow. The wavelet coherence and CFD analysis verified that the source of this signal was the low-frequency pulsating vortex under the steam generator.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

  • Bae, Hwang;Kim, Dong Eok;Ryu, Sung-Uk;Yi, Sung-Jae;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.968-978
    • /
    • 2017
  • Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal-hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

Lubrication Analysis of the Grooved Journal Bearing Lubricated with Pressurized High Temperature Water (고온/고압 환경 하에서 물로 윤활되는 그루브 저어널 베어링의 윤활 해석)

  • 이재선;박진석;김종인
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.105-108
    • /
    • 2002
  • Specially designed grooved journal bearings are installed in the main coolant pump for SMART (System-integrated Modular Advanced ReacTor) to support radial load on the rotating shaft. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and filled with circulating primary coolant which is pure water. The main coolant pump bearings are lubricated with this coolant without any other external lubricant supply. Because lubricating condition is too severe for this bearing to generate proper hydrodynamic film, investigation of lubrication characteristics of the journal bearing is important to satisfy life constraint of whole pump system, and the results will be applied to the analysis of dynamic characteristics of the shaft system. The bearing is made of silicon graphite which has self$.$lubricating effect. A lubrication analysis method is proposed for this vertically grooved journal bearing in the main coolant pump of SMART, and lubricational characteristics of the bearings are examined in this paper.

Development of an Expert System (ESRCP) for Failure Diagnosis of Reactor Coolant Pumps (원자로냉각재펌프 고장진단을 위한 전문가시스템의 개발)

  • Cheon, Se-Woo;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.128-138
    • /
    • 1990
  • This paper presents a prototype expert system (ESRCP) for Reactor Coolant Pumps. The purpose of this system is to diagnose RCP failures and to offer corrective operational guides to plant operators. The first symptoms for the diagnosis are the alarms which are related to the RCP domain. Alarm processing is required to find a primary causal alarm when multiple alarms occur. The system performs the alarm processing by rule-based deduction or priority factor operation. To diagnose the RCP failure, the system performs rule-based deduction or Bayesian inference. Various sensor readings are required as symptoms to infer a root cause. When the symptoms are insufficient or uncertain to diagnose accurately, Bayesian inference is performed.

  • PDF

The Study on a Flow-rate Calculation Method by the Pump Power in the Axial Flow Pumps (축류형 펌프에서 펌프전력을 이용한 유량산정 방범에 관한 연구)

  • Lee, Jun;Seo, Jae-Kwang;Park, Chun-Tae;Kim, Young-In;Yoon, Ju-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.227-231
    • /
    • 2004
  • It is the common features of the integral reactors that the main components of the RCS are installed within the reactor vessel, and so there are no any flow pipes connecting the steam generator or the pump whose type is the axial flow. Due to no any flow pipes, it is impossible to measure the differential pressure at the RCS of the integral reactors, and it also makes impossible measure the flow-rate of the reactor coolant. As a alternative method, the method by the measurement of the pump power of the axial flow pump has been introduced in this study. Up to now, we did not found out a precedent which the pump power is used for the flow-rate calculation at normal operation of the commercial nuclear power plants. The objective of the study is to embody the flow-rate calculation method by the measurement of the pump power in an integral reactor. As a result of the study, we could theoretically reason that the capacity-head curve and capacity-shaft power curve around the rated capacity with the high specific-speeded axial flow pumps have each diagonally steep incline but show the similar shape. Also, we could confirm the above theoretical reasoning from the measured result of the pump motor inputs. So, it has been concluded that it is possible to calculate the flow-rate by the measurement of the pump motor inputs.

  • PDF

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

HWR Shield Cooling Natural Circulation Study (원자로 차폐체 자연순환냉각에 관한 연구)

  • Shin, Jung-Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.221-227
    • /
    • 2012
  • The CANDU 9 shield cooling system was designed and layout with the objective of promoting natural circulation on loss of forced flow. In the present study, the shield cooling natural circulation was analyzed using verified the thermal-hydraulic code when the coolant pump or the heat exchanger was lost. This study showed that thermosyphoning cooled the end shields and prevented the end shields and the reserve water tank from boiling for at least 8 hours on loss of the shield cooling pumps but the heat exchangers still operational. With the loss of both pumps and heat exchangers, the end shields remain subcooled for up to 4 hours. To enhance thermosyphoning, the bypass connection to the line from the reserve water tank should be relocated to a point as low as possible.