• 제목/요약/키워드: Reactor Internals

검색결과 121건 처리시간 0.022초

중성자 신호이용 원자로 내부 구조물 감시시스템 설계 (Design of Diagnostic System for Reactor Internal Structures Using Neutron Noise)

  • 박종범;박진호;황충완;김인국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.638-640
    • /
    • 2000
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics, thermal-hydraulics, and structural dynamics. Reactor noise analyses of ex-core neutron detector internals such as fuel assembly and Core Support Barrel in Nuclear Power Plant. A real time mode separation technique have been developed and applied for the analyses. The analyses data base have been constructed for the continuous monitoring and diagnose of the reactor internals. Detailed design of diagnostic system reactor internal structures using neutron noise(RIDS).

  • PDF

영광 3&4 호기의 원자로잡음신호 해석 (Reactor Noise Analyses in Yonggwang 3&4 Nuclear Power Plants)

  • 박진호;류정수;심우건;김태룡;박종범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.679-686
    • /
    • 2000
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics, thermal-hydraulics, and structural dynamics. Reactor noise analyses of ex-core neutron detector signals have been performed to monitor the vibration modes of reactor internals such as fuel assembly and Core Support Barrel in Yonggwang 3&4 Nuclear Power Plant. A real time mode separation technique have been developed and applied for the analyses. It has been found that the first vibration mode frequency of the fuel assembly was around 2.5 Hz, the beam and shell mode frequencies of CSB(Core Support Barrel) 8 Hz and 14.5 Hz, respectively. Also the analyses data base have been constructed for the continuous monitoring and diagnose of the reactor internals.

  • PDF

지진레벨의 증가가 한국표준형 원자력발전소의 원자로 내부구조물 및 핵연 료 집합체에 미치는 영향 (The Effect of Seismic Level Increase on the Reactor Vessel Internals and Fuel Assemblies for the Korean Standard Suclear Power Plant)

  • ;정명조;박윤원;이정배
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.33-41
    • /
    • 1997
  • 경수로형 원자력발전소 표준화 작업의 일환으로 만들어진 한국표준형 원자력 발전소는 그 건설부지를 한반도뿐만 아니라 인접 아시아국가의 여러곳을 목표로 하고 있으며 이와 관련하여 안전정지지진의 레벨을 0.3g로 증가시키려는 시도가 계획되고 있다. 본 연구에서는 이와 같은 지진레벨 증가가 기존의 0.2g로 설계된 원자로 내부 구조물과 핵연료집합체에 미치는 영향을 평가하였다. 운전기준지진 및 안전정지지진의 응답을 비교함으로써 비선형 응답특성을 조사하였고 한국표준형 원자력발전소의 원자로 내부구조물 및 핵연료집합체의 설계 타당성에 대하여 언급하였다.

  • PDF

Systems Engineering Method to Develop Multiple BMI Nozzle Inspection System for APR1400

  • Abdallah, Khaled Atya Ahmed;Nam, GungIhn
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.25-40
    • /
    • 2016
  • The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. In this study, the SE methodology is used to design a nondestructive inspection system for Bottom Mounted Instrumentation (BMI) nozzles. We developed a system that enables nondestructive inspection of BMI nozzles during regular refueling outage without removing the reactor internals. A special ultrasonic (UT) probe is introduced to scan and detect cracks within the weld region of the nozzle. A 3D model of the inspection structure system was developed along with the reactor pressure vessel (RPV) and internals which permits a virtual 3D simulation of the operation to check the design concept and effectiveness of the system and to provide a good visualization of the system. This approach allows for a virtual walk through to verify the proposed BMI nozzle inspection system.

원자로 내부배럴집합체 상부면 측정위치 선정 (Selection of Measurement Locations at Inner Barrel Assembly Top Plate in the Reactor)

  • 고도영;김규형;김성환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.734-738
    • /
    • 2012
  • A comprehensive vibration assessment program for the Advanced Power Reactor 1400 reactor vessel internals is established in accordance with the United States Nuclear Regulatory Commission Regulatory Guide 1.20 Revision 3. This paper is related to instruments and measurement locations based on the vibration and stress response analysis results at the inner barrel assembly top plate in the reactor. The analysis results of the inner barrel assembly top plate in the reactor show that the deterministic stress and deformation due to the reactor coolant pump induced pressure pulsations are larger than the random stress and deformation induced by the flow turbulence. The selection of the instruments and measurement locations at Inner barrel assembly top plate in the reactor is essential requirements and very important study process for the vibration and stress measurement program in comprehensive vibration assessment program for the Advanced Power Reactor 1400 reactor vessel internals.

  • PDF

APR1400 원자로 내부구조물 종합진동평가 측정센서 선정 (Selection of Measuring Sensors for Reactor Vessel Internals Comprehensive Vibration Assessment Program in Advanced Power Reactor 1400)

  • 고도영;이재곤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.433-438
    • /
    • 2010
  • Reactor vessel internals comprehensive vibration assessment program(RVI CVAP) is one of the necessary tests to ensure the safety of nuclear power plants. RVI CVAP of U.S. Nuclear Regulatory Commission Regulatory Guide 1.20(U.S. NRC R.G. 1.20) consists of the analysis, measurement, and inspection. One of the core technologies of the measurement program for RVI CVAP is to select suitable sensors. We analyzed RVI design data of Palo Verde nuclear generating station(U.S.) and Yonggwang nuclear generating station(Korea) and investigated measuring sensors used in both of them; moreover, we investigated sensors used for measurement of RVI CVAP for the last 20 years throughout the world. Based on these results, we selected the most suitable sensors for RVI CVAP in Advanced Power Reactor 1400(APR1400).

  • PDF

APR1400 원자로내부구조물 종합진동평가 측정위치 선정 기준 (Selection Criteria of Measurement Locations for Advanced Power Reactor 1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program)

  • 고도영;김규형;김성환
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.708-713
    • /
    • 2011
  • U.S. nuclear regulatory commission(NRC) regulatory guide(RG) 1.20 requires a comprehensive vibration assessment program(CVAP) for use in verifying the structural integrity of reactor vessel internals(RVI) for flow-induced vibrations prior to commercial operation. The CVAP program consist of vibration and fatigue analysis, a vibration measurement program, an inspection program, and a correlation of their results. One of the main purposes of the analysis program is to select measurement locations, however measurement locations can not be determined by only analysis results, therefore we developed selection criteria of measurement locations for advanced power reactor 1400(APR1400) RVI CVAP, It will be used to select measurement locations and instrument types for APR1400 RVI CVAP.

Dynamic characteristics assessment of reactor vessel internals with fluid-structure interaction

  • Je, Sang Yun;Chang, Yoon-Suk;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1513-1523
    • /
    • 2017
  • Improvement of numerical analysis methods has been required to solve complicated phenomena that occur in nuclear facilities. Particularly, fluid-structure interaction (FSI) behavior should be resolved for accurate design and evaluation of complex reactor vessel internals (RVIs) submerged in coolant. In this study, the FSI effect on dynamic characteristics of RVIs in a typical 1,000 MWe nuclear power plant was investigated. Modal analyses of an integrated assembly were conducted by employing the fluid-structure (F-S) model as well as the traditional added-mass model. Subsequently, structural analyses were carried out using design response spectra combined with modal analysis data. Analysis results from the F-S model led to reductions of both frequency and Tresca stress compared to those values obtained using the added-mass model. Validation of the analysis method with the FSI model was also performed, from which the interface between the upper guide structure plate and the core shroud assembly lug was defined as the critical location of the typical RVIs, while all the relevant stress intensities satisfied the acceptance criteria.

중성자속잡음 신호를 이용한 원자로의 전동감시 (Vibration Monitoring of Reactor Internals Using Excore Neutron Flux Noise Signals)

  • 김성호;강현국;성풍현;한상준;전종선
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.361-371
    • /
    • 1995
  • The vibration of reactor internals should be monitored and diagnosed for the early detection of the failure of reactor pressure vessel. This can be performed by analyzing the time-history signals from the excore neutron flux detertors. The conventional method is an on-demand system which generates power spectra through Fast Fourier Transform(FFT) algorithm. The operator can make his own decision to detect abnormal vibration using these spectra. This post- processing method, however, requires special expertise in the reactor noise analysis and signal processing for random data. It may mislead the operator into erroneous decision-making, if he is a novice in reactor noise analysis. Hence this study is focused on the automated monitoring and diagnosis procedure for the reactor noise analysis, especially on the Fuzzy algorithm to recognize the pattern of the vibration of Core Suport Barrel. The excore neutron signals of Yonggwang Nuclear Power Plant unit 3 is acquired and analyzed using conventional FFT spectra and tested to adopt the Fuzzy method. An Automated Monitoring and Diagnosis System for CSB Vibration using this Fuzzy method is proposed. Furthermore, vibration data for CSB of Youggwang Nnclear Power Plant unit 3 is presented.

  • PDF