• Title/Summary/Keyword: Reactor Design

Search Result 1,703, Processing Time 0.023 seconds

A Study on the Measurement of the Relative Nuclear Reaction Cross-Section of the natW(p,xn)176Re Reaction using 100 MeV Proton (100 MeV 양성자를 이용한 natW(p,xn)176Re 핵반응의 상대 핵반응단면적 측정에 대한 연구)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.257-263
    • /
    • 2021
  • This study derives the relative cross-section for the natW(p,xn)176Re nuclear reaction by measuring the gamma rays generated from the nuclear reaction with natural tungsten using a 100 MeV linear accelerator of the Korea Multi-purpose Accelerator Complex in the Korea Atomic Energy Research Institute. In general, research on isotopes with a short half-life always shows a tendency that the intensity of radioactivity decreases rapidly within a short period of time, making it very difficult to measure itself. In particular, 176Re is one of the relatively short radionuclides with a half-life of 5.3 minutes. In this study, 109.08 keV gamma rays generated from the 176Re isotope having such a short half-life were measured using a high-purity Ge detector(HPGe detector). The obtained relative measurements were the results in the 8 to 14 MeV proton energy domain published by Richard G. in 1967, and the TENDL-2019 value, which was the result of A. J. Koning in 2019, which evaluated the nuclear reaction cross-section by calculation based on this comparative analysis was performed. The results of this study are expected to be usefully applied to the design of nuclear fusion reactor which is known as future energy sources, elements ratio for the nuclear synthesis of astrophysics.

Feasibility test of treating slaughterhouse by-products using microbial electrolysis cells (미생물전기분해전지를 이용한 도축부산물 처리 가능성 평가)

  • Song, Geunuk;Baek, Yunjeong;Seo, Hwijin;Kim, Daewook;Shin, Seunggu;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.31-38
    • /
    • 2021
  • The aim of this study is to evaluate the possibility of treating slaughterhouse by-products using microbial electrolysis cells (MECs). The diluted pig liver was fed to MEC reactors with the influent COD concentrations of 772, 1,222, and 1,431 mg/L, and the applied voltage were 0.3, 0.6, and 0.9 V. The highest methane production of 5.9 mL was obtained at the influent COD concentration of 1,431 mg/L and applied voltage of 0.9 V. In all tested conditions, COD removal rate was increased as the influent COD concentration increased with average removal rate of 62.3~81.1%. The maximum methane yield of 129~229 mL/g COD was obtained, which is approximately 80% of theoretical maximum value. It might be due to the bioelectrochemical reaction greatly increased the biodegradability of pig liver. Future research is required to improve the methane yield and digestibility through optimizing the reactor design and operating conditions.

Experimental study on vertically upward steam-water two-phase flow patterns in narrow rectangular channel

  • Zhou, Jiancheng;Ye, Tianzhou;Zhang, Dalin;Song, Gongle;Sun, Rulei;Deng, Jian;Tian, Wenxi;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Experiments of vertically upward steam-water two-phase flow have been carried out in single-side heated narrow rectangular channel with a gap of 3 mm. Flow patterns were identified and classified through visualization directly. Slug flow was only observed at 0.2 MPa but replaced by block-bubble flow at 1.0 MPa. Flow pattern maps at the pressure of 0.2 MPa and 1.0 MPa were plotted and the difference was analyzed. The experimental data has been compared with other flow pattern maps and transition criteria. The results show reasonable agreement with Hosler's, while a wide discrepancy is observed when compared with air-water two-phase experimental data. Current criteria developed based on air-water experiments poorly predict bubble-slug flow transition due to the different formation and growth of bubbles. This work is significant for researches on heat transfer, bubble dynamics and flow instability.

Analysis and Evaluation of CPC / COLSS Related Test Result During YGN 3 Initial Startup (영광 3호기 초기 시운전 동안 CPC / COLSS 관련시험 결과 분석 및 평가)

  • Chi, S.G.;Yu, S.S.;In, W.K.;Auh, G.S.;Doo, J.Y.;Kim, D.K.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.877-887
    • /
    • 1995
  • YGN 3 is the first nuclear power plant to use the Core Protection Calculator (CPC) as the core protection system and the Core Operating Limit Supervisory System (COLSS) as the core monitor-ing system in Korea. The CPC is designed to provide on-line calculations of Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD) and to initiate reactor trip if the core conditions exceed the DNBR or LPD design limit. The COLSS is designed to assist the operator in implementing the Limiting Conditions for Operation (LCOs) in Technical Specifications for DNBR/Linear Heat Rate (LHR) margin, azimuthal tilt, and axial shape index and to provide alarm when the LCOs are reached. During YGN 3 initial startup testing, extensive CPC/COLSS related tests ore peformed to ver-ify the CPC/COLSS performance and to obtain optimum CPC/COLSS calibration constants at var, -ious core conditions. Most of test results met their specific acceptance criteria. In the case of missing the acceptance criteria, the test results ore analyzed, evaluated, and justified. Through the analysis and evaluation of each of the CPC/COLSS related test results, it can be concluded that the CPC/COLSS are successfully Implemented as designed at YGN 3.

  • PDF

Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis (화학 공정 설계 및 분석을 위한 설명 가능한 인공지능 대안 모델)

  • Yuna Ko;Jonggeol Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.542-549
    • /
    • 2023
  • Since the growing interest in surrogate modeling, there has been continuous research aimed at simulating nonlinear chemical processes using data-driven machine learning. However, the opaque nature of machine learning models, which limits their interpretability, poses a challenge for their practical application in industry. Therefore, this study aims to analyze chemical processes using Explainable Artificial Intelligence (XAI), a concept that improves interpretability while ensuring model accuracy. While conventional sensitivity analysis of chemical processes has been limited to calculating and ranking the sensitivity indices of variables, we propose a methodology that utilizes XAI to not only perform global and local sensitivity analysis, but also examine the interactions among variables to gain physical insights from the data. For the ammonia synthesis process, which is the target process of the case study, we set the temperature of the preheater leading to the first reactor and the split ratio of the cold shot to the three reactors as process variables. By integrating Matlab and Aspen Plus, we obtained data on ammonia production and the maximum temperatures of the three reactors while systematically varying the process variables. We then trained tree-based models and performed sensitivity analysis using the SHAP technique, one of the XAI methods, on the most accurate model. The global sensitivity analysis showed that the preheater temperature had the greatest effect, and the local sensitivity analysis provided insights for defining the ranges of process variables to improve productivity and prevent overheating. By constructing alternative models for chemical processes and using XAI for sensitivity analysis, this work contributes to providing both quantitative and qualitative feedback for process optimization.

A study to find the operation conditions to minimize carbon footprint using a simulator(EQPS) (시뮬레이터(EQPS)를 이용한 탄소발자국 최소화 운전 방안에 대한 연구)

  • Jisoo Han;Jeseung Lee;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.37-48
    • /
    • 2024
  • Wastewater treatment plants (WWTPs) are obligated to reduce carbon emissions as a part of public sector greenhouse gas (GHG) emission reduction targets. However, Sewage Statistics(2022) shows that CO2 emissions per wastewater treatment volumes have decreased by only 3.03 % compared to 2020, which is far from enough to meet the Nationally Determined Contribution (NDC) targets. This study aimed to find operational conditions of biological reactors that minimize total carbon footprint (CFP). Total CFP considers both direct emissions from biological processes and indirect emissions from energy consumption. A study was conducted using a computer simulation program which is called as EQPS for a 4-stage BNR WWTP. The results showed that total CFP was reduced by 10.97% compared to the design condition when the mixed liquor recirculation (MLR) was set to 100 % of the influent flow. The N2O emission factor (EF) of the target WWTP was calculated to be 0.138-0.199 %, which is significantly lower than the IPCC default value of 1.6 %. This study proposes a method to minimize total CFP in WWTPs by optimizing biological reactor operation and emphasizes the need for further research on N2O emission reduction.

In-pile tritium release behavior and the post-irradiation experiments of Li4SiO4 fabricated by melting process

  • Linjie Zhao;Mao Yang;Chengjian Xiao;Yu Gong;Guangming Ran;Xiaojun Chen;Jiamao Li;Lei Yue;Chao Chen;Jingwei Hou;Heyi Wang;Xinggui Long;Shuming Peng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.106-113
    • /
    • 2024
  • Understanding the tritium release and retention behavior of candidate tritium breeder materials is crucial for breeder blanket design. Recently, a melt spraying process was developed to prepare Li4SiO4 pebbles, which were subsequently subjected to the in-pile tritium production and extraction platform in China Mianyang Research Reactor (CMRR) to investigate their in-situ tritium release behavior and irradiation performance. The results demonstrate that HT is the main tritium release form, and adding hydrogen to the purge gas reduces tritium retention while increasing the HT percent in the purge gas. Post-irradiation experiments reveal that the irradiated pebbles darken in color and their grains swell, but the mechanical properties remain largely unchanged. It is concluded that the tritium residence time of Li4SiO4 made by melt spraying method at 467 ℃ is approximately 23.34 h. High-density Li4SiO4 pebbles exhibit tritium release at relatively low temperatures (<600 ℃) that is mainly controlled by bulk diffusion. The diffusion coefficient at 525 ℃ and 550 ℃ is 1.19 × 10-11 cm2/s and 5.34 × 10-11 cm2/s, respectively, with corresponding tritium residence times of 21.3 hours and 4.7 hours.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(II): - Results of the Precision Monitoring - (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(II) - 정밀모니터링 결과 중심으로 -)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. 9 anaerobic digestion facilities which is normally operated during the field survey and 14 livestock manure farms were selected for precision investigation. the physicochemical analysis was performed on the moisture and organic contents, nutrients composition (carbohydrate, fat, protein), volatile fatty acids (VFAs), and nitrogen, etc. Volatile solids (VS) of organic wastes brought into the bio-gasification facilities were 2.81 % (animal manure only) and 5.92 % (animal manure+food waste), respectively. Total solids (TS) reults of samples from livestock farms were 5.6 % in piglets and 11~13 % in other kinds of breeding pigs. The actual methane yield based on nutrients contents was estimated to $0.36Sm^3CH_4/kgVS$ which is equivalent to 72 % of theoretical methane yield value. The optimum mixing ratio depending on the effect of the combined bio-gasification was obtained through the continuous stirred-tank reactor (CSTR) which is operated at different mixing ratio of swine manure and food waste leachate. The range of swine manure and food waste leachate from 60:40 to 40:60 were adequate to the appropriate conditions of anaerobic digestion; less than 100 gTS/, more than alkalinity of 1 gCaCO3/L, C/N ratio 12.0~30.0, etc.

Optimization of TDA Recycling Process for TDI Residue using Near-critical Hydrolysis Process (근임계수 가수분해 공정을 이용한 TDI 공정 폐기물로부터 TDA 회수 공정 최적화)

  • Han, Joo Hee;Han, Kee Do;Jeong, Chang Mo;Do, Seung Hoe;Sin, Yeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.650-658
    • /
    • 2006
  • The recycling of TDA from solid waste of TDI plant(TDI-R) by near-critical hydrolysis reaction had been studied by means of a statistical design of experiment. The main and interaction effects of process variables had been defined from the experiments in a batch reactor and the correlation equation with process variables for TDA yield had been obtained from the experiments in a continuous pilot plant. It was confirmed that the effects of reaction temperature, catalyst type and concentration, and the weight ratio of water to TDI-R(WR) on TDA yield were significant. TDA yield decreased with increases in reaction temperature and catalyst concentration, and increased with an increase in WR. As a catalyst, NaOH was more effective than $Na_2CO_3$ for TDA yield. The interaction effects between catalyst concentration and temperature, WR and temperature, catalyst type and reaction time on TDA yield had been defined as significant. Although the effect of catalyst concentration on TDA yield at $300^{\circ}C$ as subcritical water was insignificant, the TDA yield decreased with increasing catalyst concentration at $400^{\circ}C$ as supercritical water. On the other hand, the yield increased with an increase in WR at $300^{\circ}C$ but showed negligible effect with WR at $400^{\circ}C$. The optimization of process variables for TDA yield has been explored with a pilot plant for scale-up. The catalyst concentration and WR were selected as process variables with respect to economic feasibility and efficiency. The effects of process variables on TDA yield had been explored by means of central composite design. The TDA yield increased with an increase in catalyst concentration. It showed maximum value at below 2.5 of WR and then decreased with an increase in WR. However, the ratio at which the TDA yield showed a maximum value increased with increasing catalyst concentration. The correlation equation of a quadratic model with catalyst concentration and WR had been obtained by the regression analysis of experimental results in a pilot plant.

Shielding Design Optimization of the HANARO Cold Neutron Triple-Axis Spectrometer and Radiation Dose Measurement (냉중성자 삼축분광장치의 차폐능 최적화 설계 및 선량 측정)

  • Ryu, Ji Myung;Hong, Kwang Pyo;Park, J.M. Sungil;Choi, Young Hyeon;Lee, Kye Hong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • A new cold neutron triple-axis spectrometer (Cold-TAS) was recently constructed at the 30 MWth research reactor, HANARO. The spectrometer, which is composed of neutron optical components and radiation shield, required a redesign of the segmented monochromator shield due to the lack of adequate support of its weight. To shed some weight, lowering the height of the segmented shield was suggested while adding more radiation shield to the top cover of the monochromator chamber. To investigate the radiological effect of such change, we performed MCNPX simulations of a few different configurations of the Cold-TAS monochromator shield and obtained neutron and photon intensities at 5 reference points just outside the shield. Reducing the 35% of the height of the segmented shield and locating lead 10 cm from the bottom of the top cover made of polyethylene was shown to perform just as well as the original configuration as radiation shield excepting gamma flux at two points. Using gamma map by MCNPX, it was checked that is distribution of gamma. Increased flux had direction to the top and it had longer distance from top of segmented shield. However, because of reducing the 35% of the height, height of dissipated gamma was lower than original geometry. Reducing the 35% of the height of the segmented shield and locating lead 10cm from the bottom of the top cover was selected. After changing geometry, radiation dose was measured by TLD for confirming tester's safety at any condition. Neutron(0.21 ${\mu}Svhr^{-1}$) and gamma(3.69 ${\mu}Svhr^{-1}$) radiation dose were satisfied standard(6.25 ${\mu}Svhr^{-1}$).