• Title/Summary/Keyword: Reactor Core

Search Result 992, Processing Time 0.024 seconds

MAJOR THERMAL-HYDRAULIC PHENOMENA FOUND DURING ATLAS LBLOCA REFLOOD TESTS FOR AN ADVANCED PRESSURIZED WATER REACTOR APR1400

  • Park, Hyun-Sik;Choi, Ki-Yong;Cho, Seok;Kang, Kyoung-Ho;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.257-270
    • /
    • 2011
  • A set of reflood tests has been performed using ATLAS, which is a thermal-hydraulic integral effect test facility for the pressurized water reactors of APR1400 and OPR1000. Several important phenomena were observed during the ATLAS LBLOCA reflood tests, including core quenching, down-comer boiling, ECC bypass, and steam binding. The present paper discusses those four topics based on the LB-CL-11 test, which is a best-estimate simulation of the LBLOCA reflood phase for APR1400 using ATLAS. Both homogeneous bottom quenching and inhomogeneous top quenching were observed for a uniform radial power profile during the LB-CL-11 test. From the observation of the down-comer boiling phenomena during the LB-CL-11 test, it was found that the measured void fraction in the lower down-comer region was relatively smaller than that estimated from the RELAP5 code, which predicted an unrealistically higher void generation and magnified the downcomer boiling effect for APR1400. The direct ECC bypass was the dominant ECC bypass mechanism throughout the test even though sweep-out occurred during the earlier period. The ECC bypass fractions were between 0.2 and 0.6 during the later test period. The steam binding phenomena was observed, and its effect on the collapsed water levels of the core and down-comer was discussed.

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

Fault Detection Sensitivity of a Data-driven Empirical Model for the Nuclear Power Plant Instruments (데이터 기반 경험적 모델의 원전 계측기 고장검출 민감도 평가)

  • Hur, Seop;Kim, Jae-Hwan;Kim, Jung-Taek;Oh, In-Sock;Park, Jae-Chang;Kim, Chang-Hwoi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.836-842
    • /
    • 2016
  • When an accident occurs in the nuclear power plant, the faulted information might mislead to the high possibility of aggravating the accident. At the Fukushima accident, the operators misunderstood that there was no core exposure despite in the processing of core damage, because the instrument information of the reactor water level was provided to the operators optimistically other than the actual situation. Thus, this misunderstanding actually caused to much confusions on the rapid countermeasure on the accident, and then resulted in multiplying the accident propagation. It is necessary to be equipped with the function that informs operators the status of instrument integrity in real time. If plant operators verify that the instruments are working properly during accident conditions, they are able to make a decision more safely. In this study, we have performed various tests for the fault detection sensitivity of an data-driven empirical model to review the usability of the model in the accident conditions. The test was performed by using simulation data from the compact nuclear simulator that is numerically simulated to PWR type nuclear power plant. As a result of the test, the proposed model has shown good performance for detecting the specified instrument faults during normal plant conditions. Although the instrument fault detection sensitivity during plant accident conditions is lower than that during normal condition, the data-drive empirical model can be detected an instrument fault during early stage of plant accidents.

On the Tools of Decision Trees and Influence Diagrams for Assessing Severe Accident Management Strategies (중대사고관리전략의 평가를 위한 의사결정수목과 영향도에 관한 연구)

  • Moosung Jae;Park, Chang-Kue
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.168-178
    • /
    • 1994
  • Accident Management involves all measures to prevent core damage and retain the core within the reactor vessel, maintain containment integrity and minimize off-site releases. The accident management approach includes : (1) advanced evaluation of candidate strategies, (2) development of procedures to execute appropriate actions efficiently, and (3) identification and provision for materials, tools, and possible modifications to the plant system that may be needed for such execution. When assessing accident management strategies it effectiveness, adverse effect and its feasibility, including information needs and compatibility with existing procedures, must be considered. The objective of this paper is to introduce analytical tools of decision trees and influence diagrams to develop a framework for modeling and assessing severe accident management strategies. The characteristics associated with these took are presented. Based on decision trees and influence diagrams, the framework is applied to a simple example associated with a single decision.

  • PDF

A Three-Dimensional Simulation of Kori-1 Core by Nodal Method

  • Kim, Young-Jin;Moon, Kap-Suk;Lee, Sang-Keun;Lee, Ji-Bok;Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 1981
  • The KINS (KAERI-Improved Nodal Simulation) program, a three-dimensional nodal simulation code for pressurized water reactors, has been developed and benchmarked against the first cycle of the Kori-1 reactor. The KINS program is based on the computational model used in FLARE code and has been modified to represent the PWR characteristics more explicitly. The critical boron concentration and three-dimensional power distribution at the beginning of life hot zero power have been calculated and compared with the operating data. A three-dimensional depletion calculation at the intervals of 1000 MWD/MTU turnup steps has been performed. As the result of comparison, our calculation is shown to be in excellent agreement with the operating data. It is displayed that, incorporated with the computing time, the KINS program is an effective and powerful tool for PWR core management.

  • PDF

Prediction of Thermal-Hydraulic Phenomena in the LBLOCA Experiment L2-3 Using RELAP5/MOD2 (RELAP5/MOD2 코드에 의한 대형냉각재 상실사고 모사실험 L2-3의 열수력 현상 예측)

  • Bang, Young-Seok;Chung, Bub-Dong;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.56-65
    • /
    • 1991
  • The LOFT LOCE L2-3 was simulated using the RELAP5/MOD2 Cycle 36.04 code to assess its capability in predicting the thermal-hydraulic phenomena in LBLOCA of a PWR. The reactor vessel was simulated with two core channels and split downcomer modeling for a base case calculation using the frozen code. The result of the base calculation showed that the code predicted the hydraulic behavior, and the blowdown thermal response at high power region of the core reasonably and that the code had deficiencies in the critical How model during subcooled-two-phase transition period, in the CHF correlation at high mass flux and in the blowdown rewet criteria. An overprediction of coolant inventory due to the deficiencies yielded the poor prediction of reflood thermal response. Improvement of the code, RELAP5 / MOD2 Cycle 36.04, based on the sensitivity study increased the accuracy of the prediction of the rewet phenomena.

  • PDF

A Review of SiCf/SiC Composite to Improve Accident-Tolerance of Light Water Nuclear Reactors (원자력 사고 안전성 향상을 위한 SiCf/SiC 복합소재 개발 동향)

  • Kim, Daejong;Lee, Jisu;Chun, Young Bum;Lee, Hyeon-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.161-174
    • /
    • 2022
  • SiC fiber-reinforced SiC matrix composite is a promising accident-tolerant fuel cladding material to improve the safety of light water nuclear reactors. Compared to the current zirconium alloy fuel cladding as well as metallic accident-tolerant fuel cladding, SiC composite fuel cladding has exceptional accident-tolerance such as excellent structural integrity and extremely low corrosion rate during severe accident of light water nuclear reactors, which reduces reactor core temperature and delays core degradation processes. In this paper, we introduce the concept, technical issues, and properties of SiC composite accident-tolerant fuel cladding during operation and accident scenarios of light water nuclear reactors.

SEINA: A two-dimensional steam explosion integrated analysis code

  • Wu, Liangpeng;Sun, Ruiyu;Chen, Ronghua;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3909-3918
    • /
    • 2022
  • In the event of a severe accident, the reactor core may melt due to insufficient cooling. the high-temperature core melt will have a strong interaction (FCI) with the coolant, which may lead to steam explosion. Steam explosion would pose a serious threat to the safety of the reactors. Therefore, the study of steam explosion is of great significance to the assessment of severe accidents in nuclear reactors. This research focuses on the development of a two-dimensional steam explosion integrated analysis code called SEINA. Based on the semi-implicit Euler scheme, the three-phase field was considered in this code. Besides, the influence of evaporation drag of melt and the influence of solidified shell during the process of melt droplet fragmentation were also considered. The code was simulated and validated by FARO L-14 and KROTOS KS-2 experiments. The calculation results of SEINA code are in good agreement with the experimental results, and the results show that if the effects of evaporation drag and melt solidification shell are considered, the FCI process can be described more accurately. Therefore, it is proved that SEINA has the potential to be a powerful and effective tool for the analysis of steam explosions in nuclear reactors.

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.

SHIELDING ANALYSIS OF DUAL PURPOSE CASKS FOR SPENT NUCLEAR FUEL UNDER NORMAL STORAGE CONDITIONS

  • Ko, Jae-Hun;Park, Jea-Ho;Jung, In-Soo;Lee, Gang-Uk;Baeg, Chang-Yeal;Kim, Tae-Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.547-556
    • /
    • 2014
  • Korea expects a shortage in storage capacity for spent fuels at reactor sites. Therefore, a need for more metal and/or concrete casks for storage systems is anticipated for either the reactor site or away from the reactor for interim storage. For the purpose of interim storage and transportation, a dual purpose metal cask that can load 21 spent fuel assemblies is being developed by Korea Radioactive Waste Management Corporation (KRMC) in Korea. At first the gamma and neutron flux for the design basis fuel were determined assuming in-core environment (the temperature, pressure, etc. of the moderator, boron, cladding, $UO_2$ pellets) in which the design basis fuel is loaded, as input data. The evaluation simulated burnup up to 45,000 MWD/MTU and decay during ten years of cooling using the SAS2H/OGIGEN-S module of the SCALE5.1 system. The results from the source term evaluation were used as input data for the final shielding evaluation utilizing the MCNP Code, which yielded the effective dose rate. The design of the cask is based on the safety requirements for normal storage conditions under 10 CFR Part 72. A radiation shielding analysis of the metal storage cask optimized for loading 21 design basis fuels was performed for two cases; one for a single cask and the other for a $2{\times}10$ cask array. For the single cask, dose rates at the external surface of the metal cask, 1m and 2m away from the cask surface, were evaluated. For the $2{\times}10$ cask array, dose rates at the center point of the array and at the center of the casks' height were evaluated. The results of the shielding analysis for the single cask show that dose rates were considerably higher at the lower side (from the bottom of the cask to the bottom of the neutron shielding) of the cask, at over 2mSv/hr at the external surface of the cask. However, this is not considered to be a significant issue since additional shielding will be installed at the storage facility. The shielding analysis results for the $2{\times}10$ cask array showed exponential decrease with distance off the sources. The controlled area boundary was calculated to be approximately 280m from the array, with a dose rate of 25mrem/yr. Actual dose rates within the controlled area boundary will be lower than 25mrem/yr, due to the decay of radioactivity of spent fuel in storage.