• Title/Summary/Keyword: Reactivity feedback

Search Result 50, Processing Time 0.033 seconds

Nuclear Design Feasibility of the Soluble Boron Free PWR Core

  • Kim, Jong-Chae;Kim, Myung-Hyun;Lee, Un-Chul;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.342-352
    • /
    • 1998
  • A nuclear design feasibility of soluble boron free(SBF core for the medium-sized(600MWe) PWR was investigated. The result conformed that soluble boron free operation could be performed by using current PWR proven technologies. Westinghouse advanced reactor, AP-600 was chosen as a design prototype. Design modification was applied for the assembly design with burnable poison and control rod absorber material. In order to control excess reactivity, large amount of gadolinia integral burnable poison rods were used and B4C was used as a control rod absorber material. For control of bottom shift axial power shape due to high temperature feedback in SBF core, axial zoning of burnable poison was applied to the fuel assemblies design. The combination of enrichment and rod number zoning for burnable poison could make an excess reactivity swing flat within around 1% and these also led effective control on axial power offset and peak pin power, The safety assessment of the designed core was peformed by the calculation of MTC, FTC and shutdown margin. MTC in designed SBF core was greater around 6 times than one of Ulchin unit 3&4. Utilization of enriched BIO(up to 50w1o) in B4C shutdown control rods provided enough shutdown margin as well as subcriticality at cold refueling condition.

  • PDF

Verification of SARAX code system in the reactor core transient calculation based on the simplified EBR-II benchmark

  • Jia, Xiaoqian;Zheng, Youqi;Du, Xianna;Wang, Yongping;Chen, Jianda
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1813-1824
    • /
    • 2022
  • This paper shows the verification work of SARAX code system in the reactor core transient calculation based on the simplified EBR-II Benchmark. The SARAX code system is an analysis package developed by Xi'an Jiaotong University and aims at the advanced reactor R&D. In this work, a neutron-photon coupled power calculation model and a spatial-dependent reactivity feedback model were introduced. To verify the models used in SARAX, the EBR-II SHRT-45R test was simplified to an ULOF transient with an input flowrate change curve by fitting from reference. With the neutron-photon coupled power calculation model, SARAX gave close results in both power fraction and peak power prediction to the reference results. The location of the hottest assembly from SARAX and reference are the same and the relative power deviation of the hottest assembly is 2.6%. As for transient analysis, compared with experimental results and other calculated results, SARAX presents coincident results both in trend and absolute value. The minimum value of core net reactivity during the transient agreed well with the reported results, which ranged from -0.3$ to -0.35$. The results verify the models in SARAX, which are correct and able to simulate the in-core transient with reliable accuracy.

Core design study of the Wielenga Innovation Static Salt Reactor (WISSR)

  • T. Wielenga;W.S. Yang;I. Khaleb
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.922-932
    • /
    • 2024
  • This paper presents the design features and preliminary design analysis results of the Wielenga Innovation Static Salt Reactor (WISSR). The WISSR incorporates features that make it both flexible and inherently safe. It is based on innovative technology that controls a nuclear reactor by moving molten salt fuel into or out of the core. The reactor is a low-pressure, fast spectrum transuranic (TRU) burner reactor. Inherent shutdown is achieved by a large negative reactivity feedback of the liquid fuel and by the expansion of fuel out of the core. The core is made of concentric, thin annular fuel chambers containing molten fuel salt. A molten salt coolant passes between the concentric fuel chambers to cool the core. The core has both fixed and variable volume fuel chambers. Pressure, applied by helium gas to fuel reservoirs below the core, pushes fuel out of a reservoir and up into a set of variable volume chambers. A control system monitors the density and temperature of the fuel throughout the core. Using NaCl-(TRU,U)Cl3 fuel and NaCl-KCl-MgCl2 coolant, a road-transportable compact WISSR core design was developed at a power level of 1250 MWt. Preliminary neutronics and thermal-hydraulics analyses demonstrate the technical feasibility of WISSR.

Coupled neutronics/thermal-hydraulic analysis of ANTS-100e using MCS/RAST-F two-step code system

  • Tung Dong Cao Nguyen;Tuan Quoc Tran;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4048-4056
    • /
    • 2023
  • The feasibility of using the Monte Carlo code MCS to generate multigroup cross sections for nodal diffusion simulations RAST-F of liquid metal fast reactors is investigated in this paper. The performance of the MCS/RAST-F code system is assessed using steady-state simulations of the ANTS-100e core. The results show good agreement between MCS/RAST-F and MCS reference solutions, with a keff difference of less than 77 pcm and root-mean-square differences in radial and axial power of less than 0.5% and 0.25%, respectively. Furthermore, the MCS/RAST-F reactivity feedback coefficients are within three standard deviations of the MCS coefficients. To validate the internal thermal-hydraulic (TH) feedback capability in RAST-F code, the coupled neutronic/TH1D simulation of ANTS-100e is performed using the case matrix obtained from MCS branch calculations. The results are compared to those obtained using the MARS-LBE system code and show good agreement with relative temperature differences in fuel and coolant of less than 0.8%. This study demonstrates that the MCS/RAST-F code system can produce accurate results for core steady-state neutronic calculations and for coupled neutronic/TH simulations.

A Study on Remote Teaching System for Reactor Dynamic Characteristics Using Simulator (시뮬레이터를 애용한 원자로 동특성 원격교육 시스템 개발에 관한 연구)

  • Lee, Myeong-Soo;Hong, Jin-Hyuk;Yoo, Hyeon-Ju;Park, Sin-Yeol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.841-844
    • /
    • 2001
  • 원자력 발전소의 에너지를 생성하는 원자로의 동특성(Reactor Dynamic Characteristics)은 반응도(Reactivity) 영향인자가 변하여 원자로에 가해지는 외란(disturbances)에 의한 반응도 궤환(feedback)과 부가적으로 변하는 각종 원자로 계통의 설계변수 들에 대한 복잡한 노물리 현상을 통해 결정되며 이러한 현상을 이해하는 것은 원자력 발전소 종사자에게는 무척이나 중요한 일이다. 본 고에서는 가상현실 등 첨단기법을 이용하여 전력연구원에서 개발한 교육지원시스템(VRCATS)의 일환으로 강의실 이론 교육 시에 원격으로 시뮬레이터에 접속하여 각종 반응도 변화를 통한 원자로 노심상태 즉, 노심 내 전체 중성자속분포, 각종 온도 분포를 실시간으로 3 차원으로 보여주며, 시간에 따른 제논, 보론농도 등 반응도 변화 인자 및 총 반응도 변화추이 등을 감시 할 수 있는 컴퓨터 지원 노심설계 및 훈련 시스템(PREMARK) 개발 내용 및 특징을 기술하였다.

  • PDF

A Simple Dynamic Model and Transient Simulation of the Nuclear Power Reactor on Microcomputers

  • Han, Gee-Yang;Park, Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.605-610
    • /
    • 1997
  • A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis.

  • PDF

Dynamics and control of molten-salt breeder reactor

  • Singh, Vikram;Lish, Matthew R.;Chvala, Ondrej;Upadhyaya, Belle R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.887-895
    • /
    • 2017
  • Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits "self-regulating" behavior, minimizing the need for external controller action for load-following maneuvers.

Disturbance observer-based robust backstepping load-following control for MHTGRs with actuator saturation and disturbances

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3685-3693
    • /
    • 2021
  • This paper presents a disturbance observer-based robust backstepping load-following control (DO-RBLFC) scheme for modular high-temperature gas-cooled reactors (MHTGRs) in the presence of actuator saturation and disturbances. Based on reactor kinetics and temperature reactivity feedback, the mathematical model of the MHTGR is first established. After that, a DO is constructed to estimate the unknown compound disturbances including model uncertainties, external disturbances, and unmeasured states. Besides, the actuator saturation is compensated by employing an auxiliary function in this paper. With the help of the DO, a robust load-following controller is developed via the backstepping technique to improve the load-following performance of the MHTGR subject to disturbances. At last, simulation and comparison results verify that the proposed DO-RBLFC scheme offers higher load-following accuracy, better disturbances rejection capability, and lower control rod speed than a PID controller, a conventional backstepping controller, and a disturbance observer-based adaptive sliding mode controller.

Optimization of automatic power control of pulsed reactor IBR-2M in the presence of instability

  • Pepelyshev, Yu.N.;Davaasuren, Sumkhuu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2877-2882
    • /
    • 2022
  • The paper presents the main results of computational and experimental optimization of the automatic power control system (AC) of the IBR-2M pulsed reactor in the presence of a high level of oscillatory instability. Optimization of the parameters of the AC made it possible to significantly reduce the influence of random and deterministic oscillations of reactivity on the noise of the pulse energy, as well as to sharply reduce the manifestation of the oscillatory instability of the reactor. As a result, the safety and reliability of operation of the reactor has increased substantially.

Sensitivity study of parameters important to Molten Salt Reactor Safety

  • Sarah Elizabeth Creasman;Visura Pathirana;Ondrej Chvala
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1687-1707
    • /
    • 2023
  • This paper presents a molten salt reactor (MSR) design parameter sensitivity study using a nodal dynamic modelling methodology with explicitly modified point kinetics equation and Mann's model for heat transfer. Six parameters that can impact MSR safety are evaluated. A MATLAB-Simulink model inspired by Thorcon's 550MWth MSR is used for parameter evaluations. A safety envelope was formed to encapsulate power, maximum and minimum temperature, and temperature-induced reactivity feedback. The parameters are perturbed by ±30%. The parameters were then ranked by their subsequent impact on the considered safety envelope, which ranks acceptable parameter uncertainty. The model is openly available on GitHub.