• Title/Summary/Keyword: Reactive species

Search Result 2,972, Processing Time 0.036 seconds

Roles of Oxidative Stress in the Development and Progression of Breast Cancer

  • Nourazarian, Ali Reza;Kangari, Parisa;Salmaninejad, Arash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4745-4751
    • /
    • 2014
  • Oxidative stress is caused by an imbalance in the redox status of the body. In such a state, increase of free radicals in the body can lead to tissue damage. One of the most important species of free radicals is reactive oxygen species (ROS) produced by various metabolic pathways, including aerobic metabolism in the mitochondrial respiratory chain. It plays a critical role in the initiation and progression of various types of cancers. ROS affects different signaling pathways, including growth factors and mitogenic pathways, and controls many cellular processes, including cell proliferation, and thus stimulates the uncontrolled growth of cells which encourages the development of tumors and begins the process of carcinogenesis. Increased oxidative stress caused by reactive species can reduce the body's antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are main factors in the development of cancer. Bimolecular reactions cause free radicals in which create such compounds as malondialdehyde (MDA) and hydroxyguanosine. These substances can be used as indicators of cancer. In this review, free radicals as oxidizing agents, antioxidants as the immune system, and the role of oxidative stress in cancer, particularly breast cancer, have been investigated in the hope that better identification of the factors involved in the occurrence and spread of cancer will improve the identification of treatment goals.

Supplementation of cryoprotective extender with resveratrol decreases apoptosis index and reactive oxygen species levels in post-thaw dog sperm

  • Bang, Seonggyu;Tanga, Bereket Molla;Qamar, Ahmad Yar;Fang, Xun;Seong, Gyeonghwan;Nabeel, Abdelbagi Hamad Talha;Yu, Iljeoung;Cho, Jongki
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.4
    • /
    • pp.29.1-29.7
    • /
    • 2021
  • Resveratrol (RSV, 3,5,4'-trihydroxytrans-stilbene) protects sperm from cryo-induced damage in various animal and human species. In this study, we aimed to assess the effect of dog sperm cryoprotective extender containing RSV on the quality of post-thaw dog sperm. Sperm were collected from 4 Beagles and supplemented with different concentrations of RSV (0, 100, 200, and 400 µM). After thawing, apoptosis index, and reactive oxygen species (ROS) levels were assessed to determine post-thaw sperm quality. Dog sperm cryopreserved with 400 µM RSV showed significant improvement in post-thaw sperm quality with lower apoptosis index and ROS levels (p < 0.05). Our results showed that the supplementation of dog sperm cryoprotective extender with RSV at a concentration of 400 µM improved the post-thaw dog sperm quality in the term of sperm ROS production and apoptosis. In addition, we emphasize the necessity of testing the ROS levels and apoptosis index using flow cytometry to determine the quality of post-thaw semen.

TETRAHYDROPAPAVEROLINE INDUCES DNA DAMAGE AND APOPTOTIC CELL DEATH THROUGH GENERATION OF REACTIVE OXYGEN SPECIES

  • Shin, Mi-Hyun;Jang, Jung-Hee;Lee, Jeong-Sang;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.124-124
    • /
    • 2001
  • Tetrahydropapaveroline(THP), a dopamine-derived 6,7-dihydroxy-l-(3',4'-dihydroxybenzyl)-1,2,3,4-tetrahydrosioquinoline, has been suspected as a possible dopaminergic neurotoxin to elicit Parkinsonism. Autoxidation or monoamine oxidase-mediated oxidation of THP and subsequent generation of reactive oxygen species (ROS) may contribute to the degeneration of dopaminergic neurons induced by this isoquinoline alkaloid.(omitted)

  • PDF

Arachidonic Acid Liberated through Activation of $iPLA_2$ Mediates the Production of Reactive Oxygen Species and Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.242.2-243
    • /
    • 2002
  • We have previously reported that activation of $K^{+}$-$Cl^{-}$-cotransport (KCC) by N-ethylmaleimide (NEM) induces apoptosis through generation of reactive oxygen species (ROS) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM actions. (omitted)

  • PDF

Induction of Reactive Oxygen Species and Malignant Transformation by Tcdd Through Metabolic Formation of Catechol Estrogens

  • Na, Hye-Kyung;Chen, Zhi-Hua;Kim, Jung-Hwan;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.188-188
    • /
    • 2003
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a prototype of halogenated aromatic hydrocarbons, is a persistent environmental contaminant and one of the most powerful tumor promoters. The molecular mechanism underlying induction of tumor promotion by TCDD has not been elucidated.(omitted)

  • PDF

The Mechanism of DNA Strand Scissions Induced by Brazilin : Involvement of Reactive Oxygen Species and Cu(II)/Cu(I) Redox Cycling

  • Lee, Sun-Young;Kim, Tae-Ho;Kim, Seog K.;Mar, Woong-Chon;Seo, Eun-Kyoung;Lee, Chong-Soon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.268.1-268.1
    • /
    • 2003
  • Brazilin is the phenolic compound isolated from the Caesalpinia sappan. This compound has shown a wide range of physiological properties, such as hypoglycemic, anticonvulsant, vasorelaxing, and immunomodulating effects. In this study, we have found that brazilin induced DNA strand scissions in the presence of Cu(II) and this DNA cleavages were mediated by reactive oxygen species. (omitted)

  • PDF

Feed Gas Dependent Nonthermal Plasma Interaction with Bio-organisms

  • Baik, Ku-Youn;Park, Gyung-Soon;Kim, Yong-Hee;Yoo, Young-Hyo;Lee, Jin-Young;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.174-174
    • /
    • 2012
  • The nature of feed gas is essential for the active species formed in the nonthermal plasma jets, which would induce various biological phenomena. We investigated the different physiological effects of atmospheric pressure soft-plasma jets on Esherichia coli and blood cells according to the feed gas. Cell death rate, growth curve, membrane molecular changes and induced genes were examined. The relationship between cellular reactions and active species generated by discharge will be discussed.

  • PDF

Role of oxygen in plasma induced chemical reactions in solution

  • Ki, Se Hoon;Uhm, Han Sup;Kim, Minsu;Baik, Ku Youn;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.208.2-208.2
    • /
    • 2016
  • Many researchers have paid attention to the studies on the interaction between non-thermal plasma and aqueous solutions for biomedical applications. The gas composition in the plasma is very important. Oxygen and nitrogen are the main gases of interest in biological applications. Especially, we focus on the oxygen concentration. In this experiment, we studied the role of oxygen concentration in plasma induced chemical reactions in solution. At first, the amount of ions are measured according to changing the oxygen concentration. And we checked the relationship between these ions and pH value. Secondly, when the oxygen concentration is changed, it identified the type and amount of radical generated by the plasma. In order to confirm the effect of these chemical property change to biological material, hemoglobin and RBCs are chosen. RBCs are one of the common basic biological cells. Thirdly, when plasma treated according to oxygen concentration in nitrogen feeding gas, oxidation of hemoglobin and RBC is checked. Finally, membrane oxidation of RBC is measured to examine the relation between hemoglobin oxidation and membrane damage through relative hemolysis and Young's modulus. Our results suggest that reactive species generated by the plasma differsdepending on the oxygen concentration changes. The pH values are decreased when oxygen concentration increased. OH decrease and NO increase are also observed. These reactive species makes change of chemical properties of solution. We also able to confirm that the difference in these reactive species to affect the oxidation of the Hb and RBCs. The Hb and RBCs are more oxidized with the high oxygen concentration conditions. But membrane is damaged more by plasma treatment with only nitrogen gas. It is shown that red blood cells membrane damage and oxidation of hemoglobin are not directly related.

  • PDF