• Title/Summary/Keyword: Reactive power compensation

Search Result 297, Processing Time 0.022 seconds

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (발전비용의 부하역률 감도를 이용한 효율적인 역률 개선 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.196-198
    • /
    • 2003
  • The low load power factor causes various problems such as the increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and its effects in supplying the reactive power and enhancing the load power factor are analyzed in a small-scale power system. The load power factor sensitivity of the generation cost is applied for determining the locations and capacities of reactive power compensation devices. It is shown that the generation cost can be reduced and the system power factor can be enhanced effectively using the load power factor sensitivity.

  • PDF

Parallel-Connected Magnetic Energy Recovery Switch Used as a Continuous Reactive Power Controller

  • Wei, Yewen;Fang, Bo;Kang, Longyun;Huang, Zhizhen;liu, Teguo
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1494-1503
    • /
    • 2016
  • Power quality promotion has received increasing attention because of the wide use of semiconductor devices in recent decades. Reactive power regulation is crucial to ensuring the stable operation of power systems. In this study, a continuous reactive power controller, which is referred to as a parallel-connected magnetic energy recovery switch (MERS), is developed to regulate voltage or power factor in power grids. First, the operating principle is introduced, and a mathematical model is built. Second, a new control method for restraining current harmonics and the peak voltages of capacitors is presented. Using the proposed method, the MERS shows a wide range in terms of reactive power compensation. Finally, the performance of the proposed controller is demonstrated through computer simulations and experiments. Unlike STATCOMs, the proposed controller entails low losses, adopts a small dc capacitor, and offers ease of use.

A Development of Monitoring and Control System for Improved the Voltage Stability in the Power System (전력계통의 전압안정도향상을 위한 감시제어시스템 개발)

  • Lee, Hyun-Chul;Jeoung, Ki-Suk;Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.437-443
    • /
    • 2013
  • This paper was developed a monitoring and control system to use reactive power control algorithm. This algorithm could be improved voltage stability in power system. This method was controlled the voltage for stability improvement, effective usage of reactive power, and the increase of the power quality. PMS(Power Management System) has been calculate voltage sensitivity, and control reactive power compensation device. The voltage control was used to the FACTS, MSC/MSR(Mechanically Switched Capacitors/Reactors), and tap of transformer in power system. The reactive power devices in power system were control by voltage sensitivity ranking of each bus. Also, to secure momentary reactive power, it had been controlled as the rest of reactive power in the each bus. In here, reactive power has been MSC/MSR. The simulation result, First control was voltage control as fast response control of FACTS. Second control was voltage control through the necessary reactive power calculation as slow response control of MSR/MSR. Third control was secured momentary reactive reserve power. This control was method by cooperative control between FACTS and MSR/MSC. Therefore, the proposed algorithm was had been secured the suitable reactive reserve power in power system.

A Study on the Optimum Selection of the Power Factor Compensation Condenser According to the Improved Efficiency of Induction Motor (유도전동기 효율향상에 따른 역률 보상 콘덴서 최적 선정에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1311-1315
    • /
    • 2016
  • Induction motor requires a rotating magnetic field for rotation. Current required to generate the rotating magnetic field is immediately magnetizing current. This magnetizing current is associated with the reactive power. Induction motor is always required reactive power. If reactive power is supplied only to the power supply side, the power factor is low. Therefore, it is to compensate the power factor by connecting capacitors in parallel to the motor terminal. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. High voltage generated by the self-excitation leads to insulation failure on the motor. So it is necessary to calculate the power factor correction capacitor capacity the most suitable to the extent that the magnetizing current does not exceed the capacitor current. In this study, we first computed the magnetization current and the reactive power of the induction motor and then calculates a limit of the maximum power factor by comparing the magnetizing current and the capacitor current installed in order to achieve the target power factor.

Transient Stability Enhancement of Power System by Using Energy Storage System (에너지저장시스템을 이용한 전력계통의 과도안정도 향상)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.26-31
    • /
    • 2017
  • The conventional method of improving the transient stability in a power system is the use of reactive power compensation devices, such as the STATCOM and SVC. However, this traditional method cannot prevent the rapid voltage collapse brought about by the stalling of the motor due to a system fault. On the other hand, the ESS (Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast-acting power compensation provided by an energy storage system plays a significant role in enhancing the transient stability after a major fault in the power system. In this paper, a method of enhancing the transient stability using an energy storage system is proposed for power systems including a dynamic load, such as a large motor. The effectiveness of the energy storage system compared to conventional devices in enhancing the transient stability of the power system is presented. The results of the simulations show that the simultaneous injection of active and reactive power can enhance the transient stability more effectively.

Transient Stability Enhancement of Power System by Using Energy Storage System (풍력터빈 발전기가 연계된 전력계통에서 에너지저장시스템이 과도안정도에 미치는 영향)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.592-597
    • /
    • 2019
  • A conventional method to improve transient stability in power system is the use of reactive power compensation devices such as STATCOM and SVC. However, this traditional method cannot prevent a rapid voltage collapse brought on by motors stalling due to system fault. On the other hand, ESS(Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast active power compensation with energy storage system plays a significant role in transient stability enhancement after a major fault of power system. In this paper, transient stability enhancement method by using energy storage system is proposed for the power system including a dynamic load such as large motor. The effectiveness of energy storage system compared to conventional devices in enhancing transient stability of power system is presented. The results of simulations show that the simultaneous injection of active and reactive power can enhance more effectively transient stability.

A Knowledge Based System for Reactive Power/Voltage control Based on Pattern Recognition and Set of Indices (패텐인식과 인텍스집합을 이용한 무한전력/전압 전문가 시스템)

  • 박영문;김두현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.731-740
    • /
    • 1991
  • This paper presents a knowledge based system to solve reactive power/voltage control problem in a power system. The methods to reduce inference time are proposed in inferring the solution of problem in the knowledge base which consists of heuristic rules and inowledge of experts. A set of indices drawn from the heuristic knowledge on the power system is utilized to make up for the defect of existing knowledge based systems which determine both the location and the amount of reactive power compensation devices. The concept of set of indices developed in this paper makes it possible to infer the amount of reactive power source only since the bus order list representing priority for the location of reactive power compensator to be switched on can be determined in advance. From the fact that there exists a relationship between the system voltage pattern and the reactive power pattern in operation, the pattern recognition technique is introduced to reduce the inference time in solving the severe voltage problem. To demonstrate the usefulness of the proposed knowledge based system, the IEEE 30 bus system is chosen as a sample system. The results of case study are also presented.

Comparative Study on Transient Stability Improving Capability of Series and Shunt Compensation (비용함수에 의한 직병렬보상장치의 과도안정도 향상 특성 비교)

  • Choi, Kyu-Hyoung;Jeoug, Chang-Yang;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.655-657
    • /
    • 1996
  • The objective of this paper is to compare the series and shunt approaches of controlled reactive power compensation to improve power system transient stabilities. Including main circuit considerations of series and shunt compensators, application aspects are thought to have major impacts on efficiency and economy of the installation of the compensators. The concept is studied by means of EMTP simulations on one machine-Infinite Bus Test System which consists of a 612MVA steam turbin generator and transformer and double circuit 345KV transmission line. Idealized dynamic models of Thyristor Controlled Series Compensation and Shunt Compensation are used for the comparative study of the series and shunt compensation approach to damp power system oscillations.

  • PDF

A Characteristic Study on the Power Factor Compensation Application of High Voltage Induction Motor (고압 유도전동기 역률 보상설비의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Reactor starting method has the advantage of simplicity and closed transition in spite of lower starting torque per kVA. This method allows a smooth start with almost no observable disturbance on transition and is suitable for applications such as centrifugal pumps or fans. Reactive power doesn't contribute to work but needs to sustain the electromagnetic field required for the induction motor to operate. Starting power factor of induction motor is specially lower than running power factor. Power factor application is needed to compensate for the lower power factor of induction motor. This power factor compensation systems is occasionally being hit by the effects of the starting reactor connection position at the starting, stopping of high-voltage induction motor. This paper describes voltage and current stress affected by the installation position of power factor compensation application at the reactor starting method.

Design and Simulation of STATCOM for Compensation of Load Power Factor (부하 역률보상용 STATCOM의 설계 및 시뮬레이션)

  • Lee, Dong-Ju;Lee, Eun-Woong;Lee, Jong-Han;Kim, Jong-Gyeum
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.60-62
    • /
    • 2005
  • The operation and control scheme of reactive power compensator (so called STATCOM) based on voltage source converter is theoretically reviewed. STATCOM for compensation of load power factor is designed and its operation is verified by simulation.

  • PDF