• 제목/요약/키워드: Reactive Ion Etch

검색결과 127건 처리시간 0.027초

$BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성 (Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma)

  • 김동표;우종창;엄두승;양설;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF

The Development of Cl-Plasma Etching Procedure for Si and SiO$_2$

  • Kim, Jong-Woo;Jung, Mi-Young;Park, Sung-Soo;Boo, Jin-Hyo
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.516-521
    • /
    • 2001
  • Dry etching of Si wafer and $SiO_2$ layers was performed using He/Cl$_2$ mixture plasma by diode-type reactive ion etcher (RIE) system. For Si etching, the Cl molecules react with the Si molecules on the surface and become chemically stable, indicating that the reactants need energetic ion bombardment. During the ion assisted desorption, energetic ions would damage the photoresist (PR) and produce the bad etch Si-profile. Moreover, we have examined the characteristics of the Cl-Si reaction system, and developed the new fabrication procedures with a $Cl_2$/He mixture for Si and $SiO_2$-etching. The developed novel fabrication procedure allows the RIE to be unexpensive and useful a Si deep etching system. Since the etch rate was proved to increase linearly with fHe and the selectivity of Si to $SiO_2$ etch rate was observed to be inversely proportional to fHe.

  • PDF

자장강화된 유도결합 플라즈마를 이용한 (Ba, Sr) $TiO_3$박막의 식각 특성 연구 (The Etching Characteristics of (Ba, Sr) $TiO_3$Thin Films Using Magnetically Enhanced Inductively Coupled Plasma)

  • 민병준;김창일
    • 한국전기전자재료학회논문지
    • /
    • 제13권12호
    • /
    • pp.996-1002
    • /
    • 2000
  • Ferroelectric (Ba, Sr) TiO$_3$(BST) thin films have attracted much attention for use in new capacitor materials of dynamic random access memories (DRAMs). In order to apply BST to the DRAMs, the etching process for BST thin film with high etch rate and vertical profile must be developed. However, the former studies have the problem of low etch rate. In this study, in order to increase the etch rate, BST thin films were etched with a magnetically enhanced inductively coupled plasma(MEICP) that have much higher plasma density than RIE (reactive ion etching) and ICP (inductively coupled plasma). Experiment was done by varying the etching parameters such as CF$_4$/(CF$_4$+Ar) gas mixing ratio, rf power, dc bias voltage and chamber pressure. The maximum etch rate of the BST films was 170nm/min under CF$_4$/CF$_4$+Ar) of 0.1, 600 W/-350 V and 5 mTorr. The selectivities of BST to Pt and PR were 0.6 and 0.7, respectively. Chemical reaction and residue of the etched surface were investigated with X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS).

  • PDF

Al 식각정지층을 이용한 Nb-based SNS 조셉슨 접합의 제조공정 (Employing Al Etch Stop Layer for Nb-based SNS Josephson Junction Fabrication Process)

  • 최정숙;박정환;송운;정연욱
    • Progress in Superconductivity
    • /
    • 제12권2호
    • /
    • pp.114-117
    • /
    • 2011
  • We report our efforts on the development of Nb-based non-hysteretic Josephson junction fabrication process for quantu device applications. By adopting and modifying the existing Nb-aluminum oxide tunnel junction process, we develop a process for non-hysteretic Josephson junction circuits using metal-silicide as metallic barrier material. We use sputter deposition of Nb and $MoSi_2$, PECVD deposition of silicon oxide as insulator material, and ICP-RIE for metal and oxide etch. The advantage of the metal-silicide barrier in the Nb junction process is that it can be etched in $SF_6$ RIE together with Nb electrode. In order to define a junction area precisely and uniformly, end-point detection for the RIE process is critical. In this paper, we employed thin Al layer for the etch stop, and optimized the etch condition. We have successfully demonstrated that the etch stop properties of the inserted Al layer give a uniform etch profile and a precise thickness control of the base electrode in Nb trilayer junctions.

SDB와 전기화학적 식각정지에 의한 블크 마이크로머신용 3차원 미세구조물 제작 (Fabrication of 3-dementional microstructures for bulk micromachining by SDB and electrochemical etch-stop)

  • 정연식;정귀상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1890-1892
    • /
    • 2001
  • This paper described on the fabrication of microstructures by DRIE(Deep Reactive Ion Etching). SOI(Si-on-insulator) electric devices with buried cavities are fabricated by SDB technology and electrochemical etch-stop. The cavity was fabricated the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the fabricated cavity under vacuum condition at -750 mm Hg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing(1000$^{\circ}C$, 60 min.), the SDB SOI structure was thinned by electrochemical etch-stop. Finally, it was fabricated microstructures by DRIE as well as a accurate thickness control and a good flatness.

  • PDF

Plasma Etch Damage가 (100) SOI에 미치는 영향의 C-V 특성 분석 (C-V Characterization of Plasma Etch-damage Effect on (100) SOI)

  • 조영득;김지홍;조대형;문병무;조원주;정홍배;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제21권8호
    • /
    • pp.711-714
    • /
    • 2008
  • Metal-oxide-semiconductor (MOS) capacitors were fabricated to investigate the plasma damage caused by reactive ion etching (RIE) on (100) oriented silicon-on-insulator (SOI) substrates. The thickness of the top-gate oxide, SOI, and buried oxide layers were 10 nm, 50 nm, and 100 nm, respectively. The MOS/SOI capacitors with an etch-damaged SOI layer were characterized by capacitance-voltage (C-V) measurements and compared to the sacrificial oxidation treated samples and the reference samples without etching. The measured C-V curves were compared to the numerical results from corresponding 2-dimensional (2-D) structures by using a Silvaco Atlas simulator.

$CH_4/H_2$유도결합 플라즈마를 이용한 InP의 건식 식각에 관한 연구 (Reactive Ion Etching of InP Using $CH_4/H_2$ Inductively Coupled Plasma)

  • 박철희;이병택;김호성
    • 한국진공학회지
    • /
    • 제7권2호
    • /
    • pp.161-168
    • /
    • 1998
  • Taguchi가 제안한 강건설계 및 연구자의 주관에 의존하는 통상적인 실험방법을 병 행하여 CH4/H2 유도결합 고밀도 플라즈마를 이용한 InP 소재의 반응성이온에칭에 있어 공 정변수들이 식각특성에 미치는 영향을 분석하고 적정조건을 도출하였다. 연구 결과 ICP전력 은 표면거칠기와 측벽수직도, bias 전력은 식각속도와 수직도에, CH4분율은 수직도와 식각 속도, 석영창과 시료 사이의 거리는 표면 거칠기에 영향을 주는 변수로 작용하였고, 식각속 도에 가장 크게 영향을 주는 변수는 공정압력임을 알 수 있었다. 결과적으로 ICP Power 700W, bias Power 150W, 시편/coil 거리 14cm, 압력 7.5mTorr, 15% $CH_4$의 적정조건에서 시간당 약 3.1$\mu\textrm{m}$의 식각속도와 미려한 표면을 얻어, 기존의 반응성 이온 식각(RIE)과 비교하 여 1.5배 이상의 식각속도를 얻을 수 있었다.

  • PDF

Post etch process using CO/NH3 and Reactive Ion Beam for STT-MRAM device

  • 박성우;양경채;전민환
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.38-38
    • /
    • 2015
  • 차세대 메모리로 각광받고 있는 STT-MRAM의 동작특성을 향상시키기 위하여 식각 시 재 증착되는 식각 부산물을 저 손상을 제거하였다.

  • PDF