• Title/Summary/Keyword: Reactivated Carbon

Search Result 7, Processing Time 0.03 seconds

Effect of Molecular Weight of NOM for Adsorption of 2-MIB on Virgin and Reactivated GAC (신탄과 재생탄에서 자연유기물질의 분자량이 이·취미(2-MIB) 흡착능에 미치는 영향)

  • Kim, Sung-Jin;Hong, Seongho;Choi, Ju-Sol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.671-678
    • /
    • 2007
  • 2-methylisoborneol (MIB) is a musty odor compound produced as a secondary metabolite by some cyanobacteria and actinomycetes. It is lead to distrust in tap water due to taste and odor. It is well known that activated carbon (AC) adsorption is the best available technology to remove 2-MIB and geosmin. In this study, physical characteristics of virgin AC and reactivated AC was compared. The effect of variation of NOM molecular weight on adsorption of 2-MIB in virgin AC and reactivated AC were also evaluated. BET surface area was decreased by 13 to 23% and total pore volume was decreased by 18 to 21% due to first and second reactivation compare to the virgin carbon. However, mesopore volume ($V_{meso}$) was increased about 14% after reactivation. It showed that micropore volume was decreased and move to mesopore or macropore after reactivation. Decreased adsorption capacity of 2-MIB was greatly related to below 3000Da. Adsorption capacity of 2-MIB was rather greater in virgin AC than in reactivated, which is strongly related to micropore volume.

Effect of Pore Structure Change on the Adsorption of NOM and THMs in Water Due to the Increase of Reactivation Number of Coal-based Activated Carbon (석탄계 활성탄의 재생 횟수 증가에 따른 세공 구조 변화가 수중의 NOM과 THM 흡착에 미치는 영향)

  • Son, Hee-Jong;Ryu, Dong-Choon;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.965-972
    • /
    • 2010
  • The objective of this research was to evaluate for the changes of pore structures and adsorption capacities due to the increase the numbers of reactivation. The reactivated GAC had experienced three cycles of water treatment and thermal reactivation. The pore size distributions of virgin and reactivated GACs were very different. The virgin GAC was mostly microporous (< $15\;{\AA}$), with less mesopores ($20{\sim}100\;{\AA}$). The reactivated GACs was mostly mesoporous ($20{\sim}100\;{\AA}$), with less micropores (< $15\;{\AA}$). The specific surface area and total pore volume were reduced as the number of reactivation increased. The maximum adsorption capacity (X/M) of virgin GAC ($964.6\;{\mu}g/g$) for $CHCl_3$ was 2~3 times larger than 1st~3rd reactivated GAC ($255.6{\sim}399.5\;{\mu}g/g$). The maximum adsorption capacity (X/M) of virgin GAC (19.5 mg/g) for DOC (dissolved organic carbon) was equal to that of 1st~3rd reactivated GAC (18.0~18.7 mg/g).

Ligand Effect in Recycled CNT-Pd Heterogeneous Catalyst for Decarboxylative Coupling Reactions

  • Kim, Ji Dang;Pyo, Ayoung;Park, Kyungho;Kim, Gwui Cheol;Lee, Sunwoo;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2099-2104
    • /
    • 2013
  • We present here an efficient and simple method for preparation of highly active Pd heterogeneous catalyst (CNT-Pd), specifically by reaction of dichlorobis(triphenylphosphine)palladium ($Pd(PPh_3)_2Cl_2$) with thiolated carbon nanotubes (CNTs). The as-prepared CNT-Pd catalysts demonstrated an excellent catalytic activity for the carbon-carbon (C-C) cross-coupling reactions (i.e. Suzuki, Stille, and decarboxylative coupling reactions) under mild conditions. The CNT-Pd catalyst could easily be removed from the reaction mixture; additionally, in the decarboxylative coupling of iodobenzene and phenylpropiolic acid, it showed a six-times recyclability, with no loss of activity. Moreover, once its activity had decreased by repeated recycling, it could easily be reactivated by the addition of phosphine ligands. The remarkable recyclability of the decarboxylative coupling reaction is attributable to the high degree of dispersion of Pd catalysts in CNTs. Aggregation of the Pd catalysts is inhibited by their strong adhesion to the thiolated CNTs during the chemical reactions, thereby permitting their recycling.

A Study on VOCs Adsorption Properties Using Fine-fiber (극세섬유를 이용한 VOCs흡착 특성에 관한 연구)

  • An, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • This study is to develop of an adsorbent for the removing of human body harmful benzene, toluene, and p-xylene as VOCs. Thus, this study researched the adsorption efficiency of the commercial ACF and the reactivated ACF by KOH/ACF to molar 1: 1. As the results, the effects have shown to enlarge with the increasing of VOCs concentration for adsorptive breakthrough time and breakthrough percentage on each substance. Also, the study have investigated as a similar tendency in case of desorption efficiency for toluene and p-xylene at constant concentration as 125PPM and 0.5$\ell$/min volume flow rate. But in case of benzene, it has been investigated to have rather lower desorption efficiency re-activation ACF than commercial ACF.

Toluene Desorption of Modified Activated Carbon for Microwave Irradiation (마이크로파조사를 위한 개질화 활성탄의 톨루엔 탈착)

  • Choi, Sung-Woo;Chu, Heon-Jik
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.223-229
    • /
    • 2011
  • Toluene desorption of modified activated carbon for microwave irradiation was evaluated. As a virgin GAC reacted from microwave energy, it created an "arcing" between GAC particles in desorption process. The arcing became more and more vigorous and achieved a red flame of GAC. The silica coated GAC(Si/GAC) was developed to prevent arcing phenomenon and temperature control problem. The result shows virgin GAC with 5wt%, 10wt% and 20wt% silica had no arcing and could control temperature very well. However, the adsorption rate of Si/GAC was decreased by coated silica amount due to decreasing surface area of GAC. The 5wt% Si/GAC adsorption rate was quite similar to virgin GAC adsorption rate. After adsorption, the toluene-loaded GAC and Si/GAC was reactivated by 2450MHz MW irradiation with 300W for 5 min. Quantitative desorption of the toluene was achieved at MW irradiation at 300W with desorption efficiencies as high as 98.59% to 84.65%% after four cycles.

EPR Studies of the Active Sites of Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum

  • Shin, Woonsup;Lindahl, Paul A.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.869-876
    • /
    • 1995
  • The active sites of the nickel and iron-containing enzyme, carbon monoxide dehydrogenase (CODH) from clostridium thermoaceticum were investigated using Electron Paramagnetic Resonance (EPR) technique. CODH exhibits several spectral features called NiFeC, $g_{ave}=1.82$, $g_{ave}=1.86$. FCII signals which are originated from different clusters in this enzyme. CODH is know to catalyze two different kinds of reactions - acetyl-CoA synthesis and CO oxidation. The acetyl-CoA synthesis activity can be followed by monitoring CO/acetyl-CoA exchange. The addition of 1,10-phenanthroline (phen) to CODH selectively destroyed the CO/acetyl-CoA exchange activity and eliminated the NiFeC signal completely. CO oxidation activity and other EPR signals were unaffected. Such behavior demonstrates that CODH has two distinct active sites and that the NiFe complex is only responsible for the CO/acctyl-CoA exchange activity. Phen caused the removal of only 30% of Ni in the NiFe complex ($0.3Ni/{\alpha}{\beta}$) as shown by the quantitative metal analysis. The phen-treated CODH could be reactivated fully by incubation In $Ni^{2+}$ solution. Radioactive $^{63}Ni^{2+}$ was used to quantitate the amount of the $Ni^{2+}$ incorporated into phen-treated enzyme and showed that the amount was the same as the removed by the phen treatment. i.e. $0.3Ni/{\alpha}{\beta}$. This indicates that only 30% of NiFe complexes are labile and responsible for the CO/acctyl-CoA exchange activity, the other 70% are non-labile and have no exchange activity. This is the first clear evidence that the NiFe complex is heterogencous and labile and non-labile Ni sites arc interacting differently with substrates and chelating agents like phen.

  • PDF

The Stability Assessment of an Aquifer in Pohang Yeongil Bay due to CO2 Injection (이산화탄소 주입에 따른 포항 영일만 대수층 안정성평가)

  • Kim, Nam-Hoon;Jung, Hyung-Sik;Kim, Gvan-Dek;Jeong, Hoonyoung;Shin, Hyundon;Kwon, Yi-Kyun;Choe, Jonggeun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 2018
  • It is imperative to inject carbon dioxide($CO_2$) into an aquifer for alleviating the emission of $CO_2$. However, faults in the aquifer can be reactivated due to pressure increasement. Analyses of pressure change of the aquifer is necessary to prevent the fault reactivation. In this research, we assess the stability of an aquifer in Pohang Yeongil bay by investigating the pressure variation of faults EF1 and EF2. Two scenarios, which repeat $CO_2$ injection and suspension during two years, are simulated. Each scenario includes cases of injection rates of 20, 40, and 100 tons/day. In addition, we analyze planned and predicted injection rates for each case. In case of 20 tons/day, the maximum pressure of faults is 65% of the reactivation pressure. Even if daily injection rates are increased to 40 and 100 tons/day, the maximum pressures are 71% and 80% of the reactivation pressures, respectively. For 20 and 40 tons/day cases, planned injection rates almost accord with predicted injection rates during whole simulation period. On the other hand, predicted injection rates are smaller than planned injection rates for the 100 tons/day case due to bottom-hole pressure limit of the injection well.