• Title/Summary/Keyword: Reaction-Diffusion

Search Result 975, Processing Time 0.022 seconds

Electrochemical Characteristic on Hydrogen Intercalation into the Interface between Electrolyte of the 0.1N H2SO4and Amorphous Tungsten Oxides Thin Film Fabricated by Sol-Gel Method (졸-겔법으로 제조된 비정질의 텅스텐 산화물 박막과 황산 전해질 계면에서 일어나는 수소의 층간 반응에 대한 전기화학적 특성)

  • Kang, Tae-Hyuk;Min, Byoung-Chul;Ju, Jeh-Beck;Sohn, Tae-Won;Cho, Won-Il
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1078-1086
    • /
    • 1996
  • The peroxo-polytungstic acid was formed by the direct reaction of tungsten powder with the hydrogen peroxide solution. Peroxo-polytungstic powder were prepared by rotary evaporator using the fabricated on to ITO coated glass as substrate by dip-coating method using $2g/10mL(W-IPA/H_2O)$ sol solution. A substrate was dipped into the sol solution and after a meniscus had settled, the substrate was withdrawn at a constant rate of the 3mm/sec. Thicker layer could be built up by repeated dipping/post-treatment 15 times cycles. The layers dried at the temperature of $65{\sim}70^{\circ}C$ during the withdrawn process, and then tungsten oxides thin film was formed by final heating treatment at the temperature of $230{\sim}240^{\circ}C$ for 30min. A linear rotation between the thickness of thin film and the number of dipping/post-treatment cycles for tungsten oxides thin films made by dip-coating was found. The thickness of thin film had $60{\AA}$ after one dipping. From the patterns of XRD, the structure of tungsten oxides thin film identified as amorphous one and from the photographs of SEM, the defects and the moderate cracks were observed on the tungsten oxides thin film, but the homogeneous surface of thin films were mostly appeared. The electrochemical characteristic of the $ITO/WO_3$ thin film electrode were confirmed by the cyclic voltammetry and the cathodic Tafel polaization method. The coloring bleaching processes were clearly repeated up to several hundreds cycles by multiple cyclic voltammetry, but the dissolved phenomenon of thin film revealed in $H_2SO_4$ solution was observed due to the decrease of the current densities. The diffusion coefficient was calculated from irreversible Randles-Sevick equation from the data obtained by the cyclic voltammetry with various scan rates.

  • PDF

Reduction and Equilibrium of Vanadium-Diethylenetriamine Pentaacetates at Mercury Electrode in Aqueous Solution (수용액중의 수은전극에서 바나듐-디에틸렌트리아민 펜타아세트산염의 환원 및 평형연구)

  • Ki-Suk Jung;Se Chul Sohn;Young Kyung Ha;Tae Yoon Eom;Sock Sung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 1989
  • Reduction and equilibrium of vanadium-DTPA (DTPA = diethylenetriaminepentaacetic acid, $H_5A$) complexes at mercury electrodes are studied in 0.5M $NaClO_4$ aqueous solution at 3.2 < pH < 10.5 and 25$^{\circ}$C. At 3.2 < pH < 5.9, the reduction reaction is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}HA^{2-}$, while at 5.9 < pH < 10.5 it is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}A^{3-}$. The stability constants of $V{\cdot}HA^{2-}$ and $V{\cdot}A^{3-}$ are found to be $6.46{\times}10^{9}$ and $3.09{\times}10^{14}$, respectively. V(IV)-DTPA undergoes stepwise complexation as $VO^{2+}+H_2A^{3-}=VO{\cdot}HA^{2+}H^{+}$ and $VO{\cdot}HA^{2-}=VO{\cdot}A^{3+}+H$, where acidity constant of $VO{\cdot}HA^{2-}$- is pKa = 7.15. Stability constants of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $1.41{\times}10^{14}$ and $3.80{\times}10^{17}$, respectively. It is detected that $VO^{2+}-DATA$ is reduced irreversibly to $VO^{2-}$ with the transfer coefficient of $\alpha$ = 0.43. At more cathodic overpotential, the reduction is stepwise as V(IV)${\to}$V(III)${\to}$V(II). The first one corresponds to $VO{\cdot}HA^{2-}+e^{-}{\to}VO{\cdot}HA{3+}$ at 3.2 < pH < 7.2 and $VO{\cdot}A^{3-}+e^{-}{\to}VO{\cdot}A^{4-}$ at 7.2 < pH < 10.5. The second is identical to that of V(III). Diffusion coefficients of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $(9.0{\pm}0.3){\times}10^{-6}cm^2/s$ and $(5.9{\pm}0.4){\times}10^{-6}cm^2/ses$, respectively.

  • PDF

Estimation of Oxygen Consumption Rate and Organic Carbon Oxidation Rate at the Sediment/Water Interface of Coastal Sediments in the South Sea of Korea using an Oxygen Microsensor (산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정)

  • Lee, Jae-Seon;Kim, Kee-Hyun;Yu, Jun;Jung, Rae-Hong;Ko, Tae-Seung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.392-400
    • /
    • 2003
  • We used an oxygen microelectrode to measure the vertical profiles of oxygen concentration in sediments located near point sources of organic matter. The measurements were carried out between 13th and 17th May, 2003, in semi-closed bay and coastal sediments in the central part of the South Sea. The measured oxygen penetration depths were extremely shallow and ranged from 1.30 to 3.80 mm. This suggested that the oxidation and reduction reactions in the early diagenesis should be studied at the mm depth scale. In order to estimate the oxygen consumption rate, we applied the one-dimension diffusion-reaction model to vertical profiles of oxygen near the sediment/water interface. Oxygen consumption rates were estimated to be between 10.8 and 27.6 mmol O$_2$ m$\^$-2/ day$\^$-1/(average: 19.1 mmol O$_2$ m$\^$-2/ day$\^$-1/). These rates showed a positive correlation with the organic carbon of the sediments. The corresponding benthic organic carbon oxidation rates calculated using an modified Redfield ratio (170/110) at the sediment/water interface were in the range of 89.5-228.1 mg C m$\^$-2/ day$\^$-1/(average: 158.0 mg C m$\^$-2/ day$\^$-1/). We suggest that these results are maximum values at the presents situation in the bay because the sampling sites were located near point sources of organic materials. This study will need to be carried out at many coastal sites and throughout the seasons to allow an understanding of the mechanisms of eutrophication e.g. the spatial distribution of oxygen consumption within the oxic zone and hypoxic conditions in the coastal sea.

Review for Mechanisms of Gas Generation and Properties of Gas Migration in SNF (Spent Nuclear Fuel) Repository Site (사용 후 핵연료 처분장 내 가스의 발생 기작 및 거동 특성 고찰)

  • Danu Kim;Soyoung Jeon;Seon-ok Kim;Sookyun Wang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.167-183
    • /
    • 2023
  • Gases originated from the final SNF (spent nuclear fuel) disposal site are very mobile in the barrier and they may also affect the migration of radioactive nuclides generated from the SNF. Mechanisms of gas-nuclide migration in the multi-barrier and their influences on the safety of the disposal site should be understood before the construction of the final SNF disposal site. However, researches related to gas-nuclide coupled movement in the multi-barrier medium have been very little both at home and abroad. In this study, properties of gas generation and migration in the SNF disposal environment were reviewed through previous researches and their main mechanisms were summarized on the hydrogeological evolution stage of the SNF disposal site. Gas generation in the SNF disposal site was categorized into five origins such as the continuous nuclear fission of the SNS, the Cu-canister corrosion, the oxidation-reduction reaction, the microbial activity, and the inflow from the natural barriers. Migration scenarios of gas in porous medium of the multi-barrier in the SNF repository site were investigated through reviews for previous studies and several gas migration types including ① the free gas phase flow including visco-capillary two-phase flow, ② the advection and diffusion of dissolved gas in pore water, ③ dilatant two-phase flow, and ④ tensile fracture flow, were presented. Reviewed results in this study can support information to design the further research for the gas-nuclide migration in the repository site and to evaluate the safety of the Korean SNF disposal site in view points of gas migration in the multi-barrier.

Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil (항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong;Jung, Jae-Woon;Yoon, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.853-860
    • /
    • 2012
  • To estimate potential use of fly ash in reducing $CH_4$ and $CO_2$ emission from soil, $CH_4$ and $CO_2$ fluxes from a paddy soil mixed with fly ash at different rate (w/w; 0, 5, and 10%) in the presence and absence of fertilizer N ($(NH_4)_2SO_4$) addition were investigated in a laboratory incubation for 60 days under changing water regime from wetting to drying via transition. The mean $CH_4$ flux during the entire incubation period ranged from 0.59 to $1.68mg\;CH_4\;m^{-2}day^{-1}$ with a lower rate in the soil treated with N fertilizer due to suppression of $CH_4$ production by $SO_4^{2-}$ that acts as an electron acceptor, leading to decreases in electron availability for methanogen. Fly ash application reduced $CH_4$ flux by 37.5 and 33.0% in soils without and with N addition, respectively, probably due to retardation of $CH_4$ diffusion through soil pores by addition of fine-textured fly ash. In addition, as fly ash has a potential for $CO_2$ removal via carbonation (formation of carbonate precipitates) that decreases $CO_2$ availability that is a substrate for $CO_2$ reduction reaction (one of $CH_4$ generation pathways) is likely to be another mechanisms of $CH_4$ flux reduction by fly ash. Meanwhile, the mean $CO_2$ flux during the entire incubation period was between 0.64 and $0.90g\;CO_2\;m^{-2}day^{-1}$, and that of N treated soil was lower than that without N addition. Because N addition is likely to increase soil respiration, it is not straightforward to explain the results. However, it may be possible that our experiment did not account for the substantial amount of $CO_2$ produced by heterotrophs that were activated by N addition in earlier period than the measurement was initiated. Fly ash application also lowered $CO_2$ flux by up to 20% in the soil mixed with fly ash at 10% through $CO_2$ removal by the carbonation. At the whole picture, fly ash application at 10% decreased global warming potential of emitted $CH_4$ and $CO_2$ by about 20%. Therefore, our results suggest that fly ash application can be a soil management practice to reduce green house gas emission from paddy soils. Further studies under field conditions with rice cultivation are necessary to verify our findings.