• Title/Summary/Keyword: Reaction rate model

Search Result 690, Processing Time 0.028 seconds

Kinetics of Catalytic Reactions Occurring in a Small Reaction Volume (작은 반응 매질에서 일어나는 촉매 반응 속도에 관한 연구)

  • Kim, Jung-Han;Sung, Jae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.217-222
    • /
    • 2008
  • We investigate the kinetics of diffusion-influenced catalytic reactions occurring in small reaction volume. From a simple exact model study, we find that the reaction rate coefficient decreases with the size of reaction volume. The explicit expression for the average reaction rate constant is presented, which can be regarded as a generalization of well-known Collins-Kimball rate constant into the reactions occurring in a small reaction volume. It turns out that the traditional diffusion influenced reaction dynamics is followed by a single exponential relaxation phase with a rate constant dependent on the reaction volume for the catalytic reactions occurring in small reaction volumes.

Effects, of Catalyst Pore Structure on Reactivity in Simplified Reaction System

  • Rhee, Young-Woo;Son, Jae-Ek
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.114-122
    • /
    • 1993
  • A model describing the reaction rate and catalyst deactivation in a simplified reaction system was developed to investigate the significance of catalyst pore structure in terms of porosities, porosity ratios, and size ratios of reactants to pores. The model showed that the unimodal catalyst could give a better performance than the bimodal in certain circumstances and the crossover found in the reactivity curves resulted from a trade-off between surface area and diffusivity. Under the assumption of uniform coke buildup, the bimodal catalyst appeared to provide better resistance to deactation than unimodal catalyst.

  • PDF

Basic Study for Development of Denitrogenation Process by Ion Exchange(III) - A kinetic study in the batch reactor - (이온교환법에 의한 탈질소 공정개발의 기초연구(III) - 회분식 반응기에서의 반응속도론-)

  • 채용곤;이동환;김승일;윤태경;홍성수;이민규
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.165-171
    • /
    • 2000
  • A kinetic study for anion exchange was performed for commercially available Cl- type anion exchange resin in use to remove nitrate in water. The obtained results from the batch reactor were applied to the Langmuir and Freundlich models. The constants for Lagmuir model were qmax =29.82 and b=0.202, and for Freundlich model were K=5.509 and n=1.772. Langmuir model showed betterfit than Frendlich model for the experimental results. Ion exchange reaction rate was also calculated and the the approximate first-order reaction, rate constant k1 was 0.16 L/mg.hr. Effective diffusion coefficient was obtained in the range from $9.67$\times$10^{-8} cm^2/sec$ for initial concentration change, and from $6.09$\times$10^{-7} to 3.98$\times$10^{-6} cm^2/sec$ for reaction temperature change. Activation energy during the diffusion was calculated as 26 kcal/mol.

  • PDF

Interaction Metal Ions with NADH Model Compounds. Cupric Ion Oxidation of Dihydronicotinamides

  • Park, Joon-Woo;Yun, Sung-Hoe;Koh Park, Kwang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.298-303
    • /
    • 1988
  • Kinetic studies on cupric ion ($Cu^{2+}$) oxidation of 1-benzyl- and 1-aryl-1,4-dihydronicotinamides (XNAH) in aqueous solution were performed. In the presence of dioxygen ($O_2$), the reaction followed first order kinetics with respect to both XNAH and $Cu^{2+}$. The oxidation reaction was found to be independent and parallel to the acid-catalyzed hydration reaction of XNAH. The catalytic role of $Cu^{2+}$ for the oxidation of XNAH in the presence of $O_2$ was attributed to $Cu^{2+}/Cu^+$ redox cycle by the reactions with XNAH and $O_2$. The second order rate constants of the Cu2+ oxidation reaction kCu, and acid-catalyzed hydration reaction $k_H$ were strongly dependent on the nature of the substituents in 1-aryl moiety. The slopes of log $k_{Cu}$ vs log $K_H$ and log $k_{Cu}$ vs ${\sigma}_p$ of the substituents plots were 1.64 and -2.2, respectively. This revealed the greater sensitivity of the oxidation reaction rate to the electron density on the ring nitrogen than the hydration reaction rate. A concerted two-electron transfer route involving XNAH-$Cu^{2+}$ complex was proposed for mechanism of the oxidation reaction.

Study on Neutralization Progress Model of Concrete with Coating Finishing Materials in Outdoor Exposure Conditions Based on the Diffusion Reaction of Calcium Hydroxide

  • Park, Jae-Hong;Hasegawa, Takuya;Senbu, Osamu;Park, Dong-Cheon
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.155-163
    • /
    • 2012
  • In order to predict the neutralization of concrete which is the reaction of carbonation dioxide from the outside and cement hydration product, such as calcium hydroxide and C-S-H, it was studied the numerical analysis method considering change of the pore structure and relative humidity during the neutralization reaction. Diffusion-reaction neutralization model was developed to predict the neutralization depth of concrete with coating finishing material. In order to build numerical analysis models considering outdoor environment and finishing materials, the adaption of proposed model was shown the results of existing outdoor exposure test results and accelerated carbonation test.

Cellulose Biodegradation Modeling Using Endoglucanase and β-Glucosidase Enzymes (Endoglucanase와 β-Glucosidase 효소에 의한 셀룰로오스 생분해 모델링)

  • Cho, Sun-joo;Kim, Tae-wook;Cho, Daechul
    • Journal of Environmental Science International
    • /
    • v.31 no.3
    • /
    • pp.227-235
    • /
    • 2022
  • In this study, a biodegradation model of based on molecular cellulose was established. It is a mathematical, kinetic model, assuming that two major enzymes randomly break glycosidic bonds of cellulose molecules, and calculates the number of molecules by applying the corresponding probability and degradation reaction coefficients. Model calculations considered enzyme dose, cellulose chain length, and reaction rate constant ratio. Degradation increased almost by two folds with increase of temperature (5℃→25℃). The change of degradation was not significant over the higher temperatures. As temperature increased, the degradation rate of the molecules increased along with higher production of shorter chain molecules. As the reaction rates of the two enzymes were comparative the degree of degradation for any combinations of enzyme application was not affected much. Enzyme dose was also tested through experiment. While enzyme dose ranged from 1 mg/L to 10 mg/L, the gap between real data and model calculations was trivial. However, at higher dose of those enzymes (>15 mg/L), the experimental result showed the lower concentrations of reductive sugar than the corresponding model calculation did. We determined that the optimal enzyme dose for maximum generation of reductive sugar was 10 mg/L.

Removal of Sulfur Dioxide by Cupric Oxide and Reduction of Cupric Sulfate by Hydrogen (산화구리에 의한 이산화황의 제거와 수소에 의한 황산구리의 환원)

  • 노용우;이명철;이재훈;이태희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 1994
  • The reaction of sulfur dioxide with cupric oxide was investigated over a temperature range of 300-50$0^{\circ}C$, and the regenaration reaction was studied using cupric sulfate and hydrogen over a temperature range of 240-35$0^{\circ}C$ in a fixed bed reactor. The experimental results showed that the efficiencies for elimination and regenaration reactions were maximum at 45$0^{\circ}C$ and at 30$0^{\circ}C$ respectively. In both cases the experimental data could be interpreted properly by shrinking unreacted core model while the chemical reaction is rate controlling step. The reaction rate constants were determined to be 24.88 exp(-6724/RT) (cm/min) for elimination reaction, and 0.0165 exp(-2047/RT)(cm/min ) for regeneration reaction.

  • PDF

Microwave Induced Reduction/Oxidation Reaction by SHS Technique (마이크로파를 이용한 SHS 방법에 의한 분말의 산화-환원반응)

  • 김석범
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.44-47
    • /
    • 1998
  • A reduction/oxidation reaction between A1 metal powder and SiO2 powder was performed by Self-propagating High-temperature Synthesis (SHS) reaction induced by microwave energy to produce a composite of Al2O3 and Si powders by using a 2.45 GHz kitchen model microwave oven. A Microwave Hybrid Heating(MHH) method was applied by using SiC powders as a suscepting material to raise the temperature of the disk samples and the heat increase rate of over 100℃/min were obtained before the reaction. The reaction started around 850℃ and the heat increase rate jumped to over 200℃/min after the reaction took place.

  • PDF

On-off Dewatering Control for Lipase-catalyzed Synthesis of n-Butyl Oleate in n-Hexane by Tubular Type Pervaporation System

  • Kwon, Seok-Joon;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.165-170
    • /
    • 1998
  • Lipase-catalyzed esterification of n-butyl oleate was carried out in n-hexane as a model reaction. The optimal activity of Candida rugosa lipase was shown in a water activity ($a_w$) range of 0.52 to 0.65 at $30^{\circ}C$. The water produced from the esterification was removed by a tubular type pervaporation system. The rate of ester formed from the enzymatic esterification was allowed to be the same as the rate of water removal by maintaining an optimal $a_w$ of the reaction system using an on-off dewatering control device. The reaction rate and yield with a$a_w$ control were increased two folds higher than the respective values for the uncontrolled reaction.

  • PDF

Theoretical Analysis on the Synthesis of Ultrafine TiO2 Particles by Combustion Reaction (연소반응을 이용한 TiO2 초미립자 제조 공정에 대한 이론적 연구)

  • Chae, Bum-San;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.241-247
    • /
    • 1997
  • A numerical model has been proposed for a diffusion flame reactor to manufacture ultrafine $TiO_2$ powders. The model equations such as mass balance equation, the 0th, 1st, and 2nd moment equations of aerosols were considered. The phenomena such as $TiCl_4$ reaction rate, $TiO_2$ nucleation rate and the coagulation of $TiO_2$ powders were included in the aerosol dynamic equation. It is found that the $TiO_2$ particle concentration becomes higher, as the inlet $TiCl_4$ concentration and the total gas flow rate increase, and also as the flame temperature decreases. The $TiO_2$ particle size increases, as the flame temperature and the inlet $TiCl_4$ concentration increase and the total gas flow rate decreases.

  • PDF