• Title/Summary/Keyword: Reaction rate constant

Search Result 722, Processing Time 0.024 seconds

A study on the reaction rate of caramel type browning reaction (Caramel형 갈색화 반응속도에 관한 연구)

  • 신민자;안명수
    • Korean journal of food and cookery science
    • /
    • v.15 no.4
    • /
    • pp.363-369
    • /
    • 1999
  • The study was carried out to compare the reaction rate of caramel type browning reaction of xylose(XY), glocose(GL), sucrose(SU), glucose+citric acid(GLCA), glucose+sodiumcitrats(GLSC), glucose+glycine(GLGC) heated at 60, 80, 100, 120 and 140$^{\circ}C$ for 24 hours, respectively. 1. The color intensity (absorbance at 490 nm) of the browning reaction mixtures tends to increase as the browning reaction time gets longer and the browning of reaction temperature gets higher. But the degree of the intensity of SU and GLCA changes very little. 2. The reaction rate constant (K) was increased rapidly above 120$^{\circ}C$ and appeared maximum at 140$^{\circ}C$, especially GLGC (140.25) was the highest. The activation energy (Ea) of sugars. XY had the highest value (124.36 J/mol), while SU the lowest(104.68 J/mol). Mixtures of GLGC was shown to have higher activation energy (144.94 J/mol) than the sugar alone and Q$\_$10/ values of GLGC were 1.68-2.85. 3. The residual amount of reactants such as xylose, glucose, sucrose, citric acid, sodium citrate and glycine in each browning mixture were decreased upon the browning reaction temperature increasing. In the GLCA, GLSC and GLGC browning mixtures, respectively, the residual amounts of glucose were less than those with amino acid, organic acid and their salt.

  • PDF

A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe (황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구)

  • 이응조;노재호
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.3
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.

High Temperature Corrosion Characteristics of Al-Si-Mg Alloy in O2 and H2S/H2 Environments (Al-Si-Mg 합금의 산소 및 황화수소 환경에서의 고온부식 특성)

  • Lee, Yeong-Hwan;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.14-19
    • /
    • 2017
  • The corrosion characteristics of Al-Si-Mg alloy were investigated in $O_2$ and $H_2S/H_2$ environments at high temperature. The weight gain and the reaction rate constant of the Al-Si-Mg alloy were measured in the oxygen and hydrogen sulfide environments at 773K. The weight gain of Al-Si-Mg alloy was showed parabolic increase in the oxygen and hydrogen sulfide environments. The reaction rate constants were confirmed to be $1.45{\times}10^{-4}mg^2cm^{-4}sec^{-2}$ in the oxygen environment and $6.19{\times}10^{-4}mg^2cm^{-4}sec^{-2}$ in the hydrogen sulfide environment respectively. As a result of XPS analysis on the specimen surface, $Al_2O_3$ and MgO compounds were detected in oxygen environment and $Al_2(SO_4)_3$ sulfate was detected in the hydrogen sulfide environment. Corrosion rate of Al-Si-Mg alloy was about 4.3 times faster in hydrogen sulfide environment than oxygen environment.

Studies on the Electrochemical Properties of Indigo Dye (인디고 염료의 전기화학적 특성 연구)

  • Lee Song Ju;Jang Hong Gi;Heo Buk Gu;Park Dong Won
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.1-6
    • /
    • 2005
  • We studied the degree of variety of indigo for the electrochemical redox reaction in addition of reducing agent and the electrokinetic parameters. The electrokinetic parameters such asthe number of electron and the exchange rate constant were obtained by cyclic voltammetry. With increasing scan rate, the reduction currents of indigo were increased and the reduction potentials were shifted to the negative direction. As the results, the reduction processes of the indigo were proceeding to totally irreversible and diffusion controlled reaction. Also, exchange rate constant ($k^0$) and diffusion coefficient ($D_0$) of indigo were decreased by increasing concentration of reducing agent. We found that the less concentration, the more easily diffused and electron transferred and the product was more stable.

Camelina oil transesterification using mixed catalyst of tetra methyl amonium hydroxide and potassium hydroxide on the tubular reactor

  • Hyun, Young-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2011
  • The analysis of reaction kinetics provided that the reaction order was the $1^{st}$ of triglyceride and the rate constant was 0.067 $min^{-1}$. The transesterification of camelina oil using 0.6 wt% mixed catalyst which consists of 40 v/v% of potassium hydroxide (1 wt%) and 60 v/v% of tetra methyl ammonium hydroxide (0.8 wt%), was carried out at $65^{\circ}C$ on the tubular reactor packed with static mixer. The conversion was shown to be 95.5% at the 6:1 molar ratio of methanol to oil, flow rate of feed of 3.0 mL/min and 24 of element of static mixer. The volume of washing water emitted by 0.6 wt% mixed catalyst was the half of the volume emitted by 1 wt% potassium hydroxide.

Kinetics of the KOH Catalyzed-Methanolysis for Biodiesel Production from Fat of Tra Catfish

  • Huong, Le Thi Thanh;Tan, Phan Minh;Hoa, Tran Thi Viet;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.418-428
    • /
    • 2008
  • Transesterification of fat of Tra catfish with methanol in the presence of the KOH catalyst yields fatty acid methyl esters (FAME) and glycerol (GL). The effects of the reaction temperature and reaction time on rate constants and kinetic order were investigated. Three regions were observed. In the initial stage, the immiscibility of the Tra fat and methanol limited the reaction rate, hence this region was controlled by the mass transfer. Subsequent to this region, produced FAME like a co-solvent made the reaction mixture homogeneous, therefore the conversion rate increased rapidly so it was controlled by the kinetic parameters of the reaction until the equilibrium was approached in the final slow region. A second-order kinetic mechanism was proposed involving second regions for the forward reaction. The rate determining step for the overall KOH catalyzed-methanolysis of Tra fat was the conversion of triglycerides (TG) to diglycerides (DG). This rate constant was increased from 0.003 to $0.019min^{-1}$ when the reaction temperature was increased from 35 to $60^{\circ}C$. Its calculated activation energy was 14.379 ($kcal.mol^{-1}$).

A Study on Electroless Ni-B Plating with DMAB as Reducing Agent. I. The Electrochemical Behavior of Precipitation Reaction on Austenite Stainless Steel Substrates (DMAB를 사용한 무전해 Ni-B 합금 도금 I. 오스테나이트 스텐레스강 상의 석출반응에 대한 전기화학적 거동)

  • 이창래;박해덕;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • The effect of the DMAB concentration, temperature, deposition time, and stabilizer concentration on the precipitation reaction of the electroless nickel plating using dimethylamine borane (DMAB) as reducing agent was investigated to by the weight gain and electrochemical method. The deposition rate was dependent with DMAB concentration. The polarization resistance of the precipitation reaction was reduced with DMAB concentration. The precipitation reaction rate of Ni-B deposits was controlled by the oxidation rate of DMAB as the source of electron. The boron content of the deposit was constant at about 5.5wt%, even when DMAB concentration in the solution was increased. The effect of temperature and stabilizer ($Pb(NO_3)_2$) concentration on deposition rate was shown to have co-dependent behaviors.

  • PDF

Electrocatalytic Effect on the Oxygen Reduction and Electrochemical Properties of Co(Ⅱ)-dimethyl Bipyridine Perchlorate (Co(Ⅱ)$(dimethyl bipyridine)_3(ClO_4)_2$의 전기화학적 성질과 산소환원에 대한 전극 촉매 효과)

  • Kim, Il Kwang;Park, Chong Sool;Han, Wan Soo;Kim, Youn Keun;Jeon, Il Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.385-391
    • /
    • 1997
  • Diffusion Coefficient$(D_0)$ and electrode reaction rate Constant$(K_0)$ of Co$(dimethyl bipyridine)_3(ClO_4)_2$ were determined by cyclic voltammetry and chronoamperometry. It was also investigated that the effects of solvent, concentration, and scan rate, etc. on the diffusion coefficient and the temperature effect on the rate constant. The peak currents and diffusion coefficients were dcreased as increasing the viscosity of solvent. Diffusion coefficient was $5.54{\times}10^{-6 }cm^2/sec$ and the reaction rate constant was $2.39{\times}10^{-3 }/s$ at 25$^{\circ}C$. The thermodynamic parameters such as ${\Delta}G^{\neq},\;{\Delta}H^{\neq},\;and\;{\Delta}S$ were calculated from plotting the reaction rate constants versus the solution temperatures. This compound was shown the catalytic effect on the oxygen reduction that the reduction peak current of oxygen was greatly enhanced and the peak potential was shifted to +0.2 volt.

  • PDF