• Title/Summary/Keyword: Reaction parameter

검색결과 478건 처리시간 0.03초

반응 변수에 따른 $SnO_2$ 박막의 특성 (Properties of $SnO_2$ Thin Films Depending on Reaction Parameter)

  • 이정훈;장건익;김경원;손상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.356-357
    • /
    • 2006
  • Tin oxide thin films have been prepared on display glass from mixtures of dibutyl tin diacetate as a tin source, oxygen as an oxidant by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. The relationships between the properties of tin oxide thin films and various reaction parameters such as the deposition temperature, deposition time and the oxygen gas flow rate were studied. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and thinner thickness of deposited film led to decreasing grain size, surface roughness and electrical resistivity of the formed thin films at $325{\sim}425^{\circ}C$. The properties of fabricated $SnO_2$ films are highly changed with variations of substrate temperature and deposition time.

  • PDF

PHOTO-FENTON 공정을 이용한 축산폐수처리시 운전인자의 최적조건 (Optimal Condition of Operation Parameter for Livestock Wastewater Treatment using Photo-Fenton Process)

  • 박재홍;장순웅;조일형
    • 한국물환경학회지
    • /
    • 제21권3호
    • /
    • pp.284-288
    • /
    • 2005
  • In this study, photochemical advanced oxidation processes (AOPs) utilizing the Photo Fenton reaction ($Fe^{2+}+H_2O_2+UV$) were investigated in lab-scale experiments for the treatment of livestock wastewater. For the experimets, the livestock wastewater was pretreated by coagulation with $3,000mg/L\;FeCl_3$. The optimal conditions for Photo-Fenton processes were determined: pH was 5, the concentration of ferrous ion (Fe II) was 0.01 M. The concentration of hydrogen peroxide was 0.1 M, and molar ratio ($Fe^{2+}/H_2O_2$) was 0.1. The optimal reaction time was 80 min. Under the optimal condition of Photo-Fenton process, chemical oxygen demand (COD), color and fecal coliform removal efficiencies were about 79, 70, and 99.4%, respectively and sludge production was 7.5 mL from 100 mL of solution.

Tunnel Effects in the H + D$_2$ and D + H$_2$ Reactions

  • Jong-Baik Ree;Young-Seek Lee;In-Joon Oh;Tai-kyue Ree
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권1호
    • /
    • pp.28-36
    • /
    • 1983
  • We considered the tunneling effect on the rate constants calculated from transition-state theory for the H + $D_2$ and D + $H_2$ reactions. A method for evaluating the important parameter Ec (potential barrier height) was proposed. A tunnel-effect correlation factor (TECF) ${\Gamma}_{t}exp{\theta}_t$ was estimated from experimental data, and compared with the corresponding values obtained from many theoretical methods. According to our results, the tunneling effect cannot be negligible around $800^{\circ}$K where the TECF value is ca. 0.8 whereas the factor approaches to unity at T > $2400^{\circ}$K where the tunneling completely disappears. In addition to the above fact, we also found that the TECF for the D + $H_2$ reaction is greater than that of the H + $D_2$ reaction in agreement with Garrett and Truhlar's result. In contrast to our result, however, Shavitt found that the order is reversed, i.e., TECF for (D + $H_2$) is greater than that for (H + $D_2$). We discussed about the Shavitt's result.

호흡률을 이용한 연속회분식반응조의 질산화 공정 해석 (Nitrification process analysis by respirometry in a sequencing batch reactor)

  • 김동한;김성홍
    • 상하수도학회지
    • /
    • 제33권1호
    • /
    • pp.55-62
    • /
    • 2019
  • The respirometric technique has been used to analyze the nitrification process in a sequencing batch reactor(SBR) treating municipal wastewater. Especially the profile of the respiration rate very well expressed the reaction characteristics of nitrification. As the nitrification process required a significant amount of oxygen for nitrogen oxidation, the respiration rate due to nitrification was high. The maximum nitrification respiration rate, which was about $50mg\;O_2/L{\cdot}h$ under the period of sufficient nitrification, was related directly to the nitrification reaction rate and showed the nitrifiers activity. The growth rate of nitrifiers is the most critical parameter in the design of the biological nutrient removal systems. On the basis of nitrification kinetics, the maximum specific growth rate of nitrifiers in the SBR was estimated as $0.91d^{-1}$ at $20^{\circ}C$, and the active biomass of nitrifiers was calculated as 23 mg VSS/L and it was about 2% of total biomass.

원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용 (Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure)

  • 이혁주;임재성;문일환;김재민
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

Ti 및 TiAl 주조재의 ${\alpha}$-case 형성에 미치는 공정변수에 대한 영향 (Effects of Process Parameter on Alpha-Case Formation of Ti and TiAl castings)

  • 이상화;김명균;성시영;김영직
    • 한국주조공학회지
    • /
    • 제23권3호
    • /
    • pp.137-146
    • /
    • 2003
  • The main purpose of this study is to investigate the effects of process parameter on alpha-case formation of Ti and TiAl castings. The previous studies showed that the molten titanium is excessively reactive to the refractory oxide mold, resulting in alpha-caes of the titanium castings regardless of composition of titanium alloys. However, the behavior of the alpha-case formation of TiAl alloy is not consistent with conventional titanium alloy. In order to investigate the alpha-case formation of Ti and TiAl castings with process parameter, especially the associated factors of investment mold such as mold material, binder and mold preheating temperature. An attempt has been made to characterize the alpha-case of titanium casting by using optical microscope, EDS, XRD, EMPA and hardness profiles. The formation of the alpha-case on the surface of pure titanium during investment casting was rather by that of solid solution with metallic element from mold material. The required mold strength was obtained with $CaZrO_3$ because of the possibility of using water soluble binder. However, the separation phenomenon between facing and back-up mold materials should be considered. The interfacial reaction of TiAl alloy showed different behavior from that of pure titanium and $Al_2O_3$ was best mold materials. The effect of binder as well as mold material on the formation of alpha-case was significant.

음식물폐기물-하이드로촤 최적 반응조건 도출을 위한 적정법 응용 (Optimization of hydrochar generated from real food waste using titration methods)

  • 최민선;최성은;한솔;배선영
    • 분석과학
    • /
    • 제28권1호
    • /
    • pp.40-46
    • /
    • 2015
  • 하이드로촤는 음식물폐기물과 같이 수분을 함유하고 있는 바이오매스의의 열수가압탄화반응을 통해 얻어질 수 있다. 열수가압탄화반응의 고체 생성물인 하이드로촤는 다양한 오염물질의 흡착제로서 훌륭한 잠재가능성을 가지고 있다. 흡착제의 표면적과 기공의 부피는 흡착능을 결정하는 매우 중요한 요소 중 하나로 알려져 있다. 이를 측정하기 위해서 고가의 장비 구비 및 숙련된 전문가를 필요로 하며 장비를 갖추지 못한 경우 샘플 측정료 등의 부담이 따르기 때문에 어느 곳에서나 사용하기가 힘들다. 본 연구에서는 요오드와 메틸렌블루 흡착을 통한 적정법을 이용하여 표면적 및 기공 부피를 측정하였으며 BET 분석 결과와 관련성을 평가하였다. 적정법을 통하여 계산된 표면적 및 기공 부피와 실제 수치는 정확하게 일치하지는 않지만 그 경향은 유사하다. 그 결과로 흡착제로서의 활용을 위한 하이드로촤의 최적 조건은 반응온도 $230^{\circ}C$, 반응시간 4 시간으로 결정하였다. 표면적 및 기공 부피의 계산은 아이오딘과 메틸렌블루의 흡착값의 조합을 이용하여 가능하고, 이 적정법을 이용하는 표면적 측정방법은 간단하고 빠르게 최적조건을 결정할 수 있다.

1년 양생 조건의 Fly Ash를 혼입한 고성능 콘크리트의 시간의존적 염해저항성 평가 (Evaluation of Time-Dependent Chloride Resistance in HPC Containing Fly Ash Cured for 1 Year)

  • 윤용식;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권4호
    • /
    • pp.52-59
    • /
    • 2018
  • 철근콘크리트 구조물의 대표적인 열화현상인 염해를 억제하고자 여러 가지 연구가 진행되었는데, 그 중에서 혼화재료를 콘크리트에 혼입하여 사용하는 방법이 대표적으로 알려져 있다. 본 연구에서는 대표적인 콘크리트 혼화재료인 플라이애시를 혼입한 콘크리트와 OPC 콘크리트에 대하여 3가지 수준의 물-결합재비(37%, 42%, 47%)를 고려해 내구성능 평가를 실시하였다. 각 목표 재령일에서 Tang's method에 준하여 촉진 염화물 확산계수 측정 실험을, ASTM C 1202에 준하여 통과전하량 측정 실험을, KS F 2405에 준하여 압축강도 실험을 실시하였다. 또한, 기존의 연구결과인 재령 28일의 실험결과를 참고하여 확산계수에 대한 시간의존성지수(m)를 도출하여 고찰하였으며, 장기재령의 압축강도와 시간의존성지수 간의 상관관계를 평가하였다. 재령 49일부터 플라이애시 혼입 콘크리트에서 OPC 콘크리트 대비 개선된 염해저항성능을 나타내었으며 이는 포졸란 반응에 의해 생성된 불용성의 수화물이 원인으로 사료된다. 플라이애시 혼입 콘크리트에서 OPC 콘크리트 대비 약 1.5배 높은 시간의존성지수를 나타내었으며, 압축강도와의 상관관계 평가 결과, OPC 콘크리트는 압축강도가 증가할수록 선형적으로 시간의존성지수가 증가하는 경향을, 플라이애시 콘크리트는 압축강도가 증가할수록 선형적으로 시간의존성지수가 약간 감소하는 경향을 나타냈다.

계단내리기 시 우세·비우세 체지의 가방착용과 무게변화에 따른 지면반력 파라미터 분석 (Analysis of the Ground Reaction Force Parameters According to the Change of Position and Weights of Bag during Downward Stairs Between Dominant and Non-dominant in Upper & lower limbs)

  • 현승현;이애리;류재청
    • 한국운동역학회지
    • /
    • 제24권1호
    • /
    • pp.43-50
    • /
    • 2014
  • The purpose of this study was to analyze of the GRF (ground reaction force) parameters according to the change of positions and weights of bag during downward stairs between dominant and non-dominant in upper & lower limbs. To perform this study, participants were selected 9 healthy women (age: $21.40{\pm}0.94yrs$, height: $166.50{\pm}2.68cm$, body mass: $57.00{\pm}3.61kg$, BMI: $20.53{\pm}1.03kg/m^2$), divided into 2 carrying bag positions (dominant arm/R, non-dominant arm/L) and walked with 3 type of bag weights (0, 3, 5 kg) respectively. One force-plate was used to collect GRF (AMTI OR6-7) data at a sample rate of 1000 Hz. The variables analyzed were consisted of the medial-lateral GRF (Fx), anterior-posterior GRF (Fy), vertical GRF (Fz), impact loading rate and center of pressure (COPx, COPy, COP area, COPy posterior peak time) during downward stairs. 1) The Fx, Fy, Fz, COPx, and COP area of GRF were not statistically significant between dominant leg and non-dominant leg, but non-dominant leg, that is, showed the higher COPy, and showed higher impact loading rate than that dominant leg during downward stairs. 2) In bag wearing to non-dominant arm, Fx, Fz, COPx, COPy, impact loading rate and COP area showed increase tendency according to increase of bag weights. Also, against bag wearing to dominant arm, non-dominant showed different mechanism according to increase of bag weights. The Ground Reaction Force parameters showed different characteristics according to the positions and weights of bag during downward stairs between dominant and non-dominant arm.

고에너지 물질의 연소반응 해석을 위한 반응속도식 개발 및 정의에 관한 연구 (A Study on Development of Reaction Rate Equation for Reactive Flow Simulation in Energetic Materials)

  • 김보훈;여재익
    • 한국추진공학회지
    • /
    • 제16권5호
    • /
    • pp.47-57
    • /
    • 2012
  • 고에너지 물질의 연소 현상을 해석하기 위하여 반드시 필요한 반응속도식과 이를 구성하고 있는 미 정상수를 결정하는 이론적 방법을 제안하였다. 개선된 I&G 모델은 기존의 반응속도식이 갖던 문제점들을 효과적으로 극복하면서 동시에 중요한 물리적 의미를 내포하는 형태로 제안되었다. 이는 공극붕괴(void collapse)로 인한 hotspot의 생성을 의미하는 점화 모델과 폭굉(detonation)으로의 천이를 의미하는 화염 발달 모델의 합으로 구성되어 있다. 또한 함께 소개된 이론적 모델은 고에너지 물질의 수치해석 기법인 Hydrocode를 사용하기 전에 미정상수 $b,\;G,\;x,\;I$를 결정함으로써 특정 고에너지 물질의 연소 특성을 규명하는데 사용된다. 이론적 방법은 기존의 고에너지 물질의 연소 시험을 모사한 수치해석적 방식보다 효율적이고 정확도가 높은 결과를 제공하므로 진일보 된 방법이라고 할 수 있다.