• Title/Summary/Keyword: Reaction mechanisms

Search Result 740, Processing Time 0.023 seconds

Retention Efficiency and Flocculation Mechanism of Microparticle Systems Based on Colloidal Silica (콜로이달 실리카에 의한 마이크로 파티클 시스템의 보류 효과 및 응집 기구)

  • 김향수;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.4
    • /
    • pp.7-15
    • /
    • 2002
  • It is of critical importance to understand the characteristics of papermaking additives and their reaction mechanisms to fully utilize the benefits they provide. Among the papermaking additives, retention aids play critical roles in improving productivity, product quality and process economy. Diverse research efforts to understand the reaction mechanisms between cationic polymers and anionic microparticles have been made since microparticle retention systems were introduced into the market. And it is most commonly accepted that flocs formed by the addition of cationic polymers are dispersed by shear force and the broken flocs are reflocculated instantly with the addition of microparticles. There are still many unanswered questions, however, on the reaction phenomena between cationic polymers and anionic microparticles. In this study, several cationic polymers including waxy maize starch, com starch and guar gum were used to investigate their retention efficiency when they were used along with anionic colloidal silica.

3D Generalized Langevin Equation (GLE) Approach to Gas-Surface Energy Transfer : Model H + H → $H_2/Si(100)-(2*1)$

  • Youxiang Zhang;Park, Seung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1095-1100
    • /
    • 2000
  • we have proposed a three-dimensional GLE approach to gas-surface reactive scattering, model H + H $${\rightarrow}$H_2/Si(100)-(2$ ${\times}$1) system, and the implementation of 3D GLE method on the hydrogen on silicon surface has been presented. The formalism and algori thm of the 3D GLE are worked properly in the reactive scattering system. The calculated normal mode frequencies of surface vibrations were almost identical to previous harmonic slab calculations. The reaction probabilities were calculated for two energies. The calculations show that a very large amount of energy is transferred in surface in low energy scattering. Three different types of reaction mechanisms has been observed, which can not be shown in flat and rigid surface models. Further work on the reaction mechanisms and calculations of the vibrational and rotation distributions of products is in progress. The results will be reported elsewhere soon.

Antioxidative and Antimutagenic Characteristics of Melanoidin Related Products (Melanoidin의 항산화성 및 항돌연변이원성)

  • 최홍식;이창용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.246-252
    • /
    • 1993
  • Melanoidins, as brown colored polymers, are formed through the diversified reaction systems of Maillard type and other reactions. Melanoidins are important components in relation to food quality and also are known to have antioxidative, mutagenic and antimutagenic activities. Since these aspects have been extensively reviwed elsewhere, only the recent studies regarding to their antioxidative and antimutagenic activities are discussed in this review. Even though their mechanisms are not clearly identified, melanoidins or specific fractions isolated from their mixtures have shown varied antioxidative activities depending on the reaction systems and reaction conditions. Those activities presumely are derived from the complex functional properties of hydrogen / electron donors and metal chelating power, which are originated from their reductone structure and others. It is considered that pyrolysate and other mutagens are formed by the given conditions in some cases during browning reaction, whereas melanoidins and their fractions have antimutagenic effects on chemical and other mutagens. There are positive correlationship among the color intensity, antioxidative activity and antimutagenicity of melanoidins or their fractions. These suggest that the antimutagenicity of melanoidins could be attributed to their antioxidative properties, however, it might also be due to other factors, because the relevant responses for antimutagenicity are very complicate and not clear. Accordingly, further studies are required to determine the actual acitivities and mechanisms involved in antioxidation and (anti)mutagenicity of melanoidins by reaction systems / conditions and by the isolated fractions. And also, additional studies are needed to evaluate the applications of melanoidins and their relevant effects to food and human health.

  • PDF

The Trends in Methanol Oxidation Reaction Mechanisms and Electrochemical Oxidation Catalysts (메탄올 산화 반응 메커니즘과 전기화학 산화 촉매 최신 동향)

  • Sungyool Bong
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.79-84
    • /
    • 2024
  • Methane is an abundant and renewable hydrocarbon, but it causes global warming as a greenhouse gas. Therefore, methods to convert methane into useful chemicals or energy sources are needed. Methanol is a simple and abundant chemical that can be synthesized by the partial oxidation of methane. Methanol can be used as a chemical feedstock or a transportation fuel, as well as a fuel for low-temperature fuel cells. However, the electrochemical oxidation of methanol is a complex and multi-step reaction. To understand and optimize this reaction, new electrocatalysts and reaction mechanisms are required. This review discusses the methanol oxidation reaction mechanism, recent research trends, and future research directions.

Effects of EGR and Premixedness on NO Formation of Methane/Air Flames (EGR 및 예혼합 정도가 메탄/공기 화염의 NO 생성에 미치는 영향)

  • Lee, Won-Nam;Lee, Woong-Jae
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.63-74
    • /
    • 1999
  • The effects of EGR and premixedness on NO formation have been numerically investigated. The flame structure is classified into three categories; premixed flame($=1)$, rich/lean premixed flame(${\alpha}=0.6$ and 0.8) and diffusion flame(${\alpha}=0$). NO formation/destruction mechanisms are assorted to thermal, reburn and Fenimore mechanisms. The temperature of unburned gas is arranged to 298 and 500 K to have access to the condition in a real internal combustion engine. The results show that all three NO formation/destruction reaction rates in the fuel rich flame zone could be decreased by EGR for rich/lean premixed flames, while those in the fuel lean flame zone are not significantly changed. Near the stagnation plane, however, only the thermal NO reaction rate is decreased. The contribution of reburn and Fenimore mechanisms for the net NO production becomes less significant as the premixedness of a flame increases. The larger amount of NO reduction with EGR is expected under the higher temperature and/or higher fuel/air premixedness conditions due to the increased contribution of the thermal mechanism. The role of Fenimore and reburn mechanisms could be important for rich premixed and diffusion flames; therefore, the effect of EGR on NO reduction could vary with fuel/air premixedness. The premixedness of a partially premixed flame changes the flame structure and could affect the NO production characteristics.

  • PDF

Individual Reaction Mechanisms and Properties of a DGEBA/DDS Epoxy Resin System (DGEBA/DDS 에폭시수지계의 개별적 반응기구 및 물성)

  • Byung-Gak Min
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.73-76
    • /
    • 1999
  • Near infrared spectroscopy techniques were used to study the cure reactions of epoxy resin system based on diglycidyl ether of bisphenol A(DGEBA) resins cured with 4, 4' diaminodiphenyl sulfone (DDS) hardner. Stoichiometric DGEBA/DDS resin formulation was involved in this study. The infrared absorption spectra of the prepared formulation were obtained on an FTIR spectrometer operating in the region of 11000 to 4000$cm^{-l}$. The chemical group peaks of interest in a DFEBA/DDS spectrum were identified by a comparative study with individual spectra of DGEBA and DDS monomers. Where necessary, special model compounds were used to identify unknown bands, such as the primary amine band at 4535$cm^{-l}$. The absorption bands of interest were integrated to quantify the areas and then converted to molar concentrations. This series of quantitative analyses of the major chemical groups led us to understand not only the reaction mechanism but also the cure kinetics. In this paper, the reaction mechanisms observed in stoichiometric DGEBA/DDS resin formulation and the various properties of the resin system as a function of cure temperature are described.

  • PDF

DFT/B3LYP Study of the Substituent Effects on the Reaction Enthalpies of the Antioxidant Mechanisms of Magnolol Derivatives in the Gas-Phase and Water

  • Najafi, Meysam;Najafi, Mohammad;Najafi, Houshang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3607-3617
    • /
    • 2012
  • In this paper, the study of various ortho- and meta-substituted Magnolol derivatives is presented. The reaction enthalpies related to three antioxidant action mechanisms HAT, SET-PT and SPLET for substituted Magnolols have been calculated using DFT/B3LYP method in gas-phase and water. Calculated results show that electron-withdrawing substituents increase the bond dissociation enthalpy (BDE), ionization potential (IP) and oxidation/reduction enthalpy (O/RE), while electron-donating ones cause a rise in the proton dissociation enthalpy (PDE) and proton affinity (PA). In ortho- position, substituents show larger effect on reaction enthalpies than in meta-position. In comparison to gas-phase, water attenuates the substituent effect on all reaction enthalpies. In gas-phase, BDEs are lower than PAs and IPs, i.e. HAT represents the thermodynamically preferred pathway. On the other hand, SPLET mechanism represents the thermodynamically favored process in water. Results show that calculated enthalpies can be successfully correlated with Hammett constants (${\sigma}_m$) of the substituted Magnolols. Furthermore, calculated IP and PA values for substituted Magnolols show linear dependence on the energy of the highest occupied molecular orbital ($E_{HOMO}$).

Photocatalytic-Photooxidation of Halogen Derivatives of Phenols in Aqueous Solution (방향족 탄화수소 할로겐 유도체의 광촉매-광산화)

  • 김삼혁;권규혁;정오진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.233-240
    • /
    • 1999
  • Industrial waste which highly loaded by halogenide phenols was photooxidized by laboratory-scale photooxidation of these organic impurities in the presence of aerotropic and titaniumdioxide as photocatalyst. The disapperance of organic compounds was determined as a function of the irradiation time. Some contaminants such as 2-chlorophenol, 2-bromphenol, 3-bromphenol, 4-bromphenol, 2,4-dibromophenol and 2,6-dibromophenol were photodegraded separately to obtain information on the reaction rates, reactivities, and reaction mechanisms of the photooxidation, and on the stoichiometric correlation between organic reactant and inorganic products concentration in the course of the photocatalytic photoreaction.

  • PDF

고체/기체계 가역 화학 반응열 이용 HEAT PUMP 기술 개발

  • 이종호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.78-81
    • /
    • 1993
  • AN EXTENSIVE RESEARCH AND DEVELOPMENT WORK WILL BE CARRIED OUT FOR THE COMMERCIALIZATION OF THE CHEMICAL HEAT PUMP SYSTEM WHICH BASED ON THE ELF AQUITAINE FRANCE PATENTED AND KIME LICENSED SOLID/GAS CHEMICAL REACTION TECHNOLOGY. TOWARD ON THAT GOAL, THE BASIC AND ENGINEERING DETAILS SUCH AS IMPEX BLOCK MATERIAL, PHYSICO-CHEMICAL AND THERMO-CHEMICAL CHARACTERISTICS OF REACTION MECHANISMS IN THE SOLID/GAS CHEMICAL REACTION HEAT PUMP SYSTEMS. THREE KIND OF APPLICATION SYSTEM ARE NOW INVESTIGATED; AIR CONDITIONING, REFRIGERATOR AND INDUSTRIAL PROCESS HEATING AND COOLING SYSTEM.

  • PDF