• Title/Summary/Keyword: Reaction Sintering SiC

Search Result 137, Processing Time 0.024 seconds

Synthesis of Ultrafine LaAlO$_3$ Powders with Good Sinterability by Self-Sustaining Combustion Method Using (Glycine+Urea) Fuel ((Glycine+Urea) 혼합연료를 이요한 자발착화 연소반응법에 의한 우수한 소결성의 초미분체 LaAlO$_3$ 분말 합성)

  • Nam, H.D.;Choi, W.S.;Lee, B.H.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • LaAlO3d single phase used as the butter layer on Si wafer for YBa2Cu3O7-$\delta$ superconductor application were prepared by solid state reaction method and by self-sustaining combustion process. The microstructure and crystallity of synthesiszed LaAlO3 powder studied using scanning electron microscope (SEM) and X-ray diffractometer(XRD), specific surface area and sintering characteristics fo powder were investigated by Brunauer-Emmett-Teller (BET) method and dilatometer respectively. In solid state reaction method, it is difficult to obtain LaAlO3 single phase up to 150$0^{\circ}C$ period. However, in self-sustaining combustion process, it is to easy to do it only $650^{\circ}C$. Based on the results of analysis of dilatometer it is easier to obtain high sintering density (98.87%) in self-sustaining combustion process than in the solid state reaction method. This reason is that the average particle size prepared by self-sustaining combustion process is nano crystal size and has high specific surface are value(56.54 $m^2$/g) compared with that by solid state reaction method. Also, LaAlO3 layer on the Si wafer has been achieved by screen printing and sintering method. Even though the sintering temperature is 130$0^{\circ}C$, the phenomena of silicon out diffusion in LaAlO3/Si interphase are not observed.

  • PDF

Reaction Sintered Mullite-Spinel-Zirconia Composites (반응소결 물라이트-스프넬-지르코니아 복합체에 관한 연구)

  • 박홍채;편지현;이윤복;류수착;박성수;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1255-1261
    • /
    • 1995
  • Mullite-spinel-zirconia composites were prepared by reaction sintering of calcined alumina and magnesia, and zircon powders. The influence of calcining temperature on densification processes and on mechaical properties of subsequently sintered compacts was investigated. The mullite was formed by the reaction of $\alpha$-Al2O3 and amorphous SiO2 at firing temperatures over 141$0^{\circ}C$. The mullitization proceeded more rapidly in the specimen calcined at 110$0^{\circ}C$ than at either 120$0^{\circ}C$ or 130$0^{\circ}C$. Microstructures before and after the mullitization (or mullite dissociation) showed different morphologies, and their effects on mechanical properties were significant. The flexural strength and fracture toughness of the specimen calcined at 130$0^{\circ}C$ and subsequently fired at 145$0^{\circ}C$ were 316 MPa and 4.2Mpa.m1/2, respectively.

  • PDF

Dense Polycrystalline SiC Fiber Derived from Aluminum-doped Polycarbosilane by One-Pot Synthesis (One-Pot 합성공정으로 만든 Aluminum이 doping된 폴리카보실란으로부터 제조된 치밀한 결정화 탄화규소 섬유)

  • Shin, Dong-Geun;Kong, Eun-Bae;Riu, Doh-Hyung;Kim, Young-Hee;Park, Hong-Sik;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.393-402
    • /
    • 2007
  • Polyaluminocarbosilane was synthesized by direct reaction of polydimethylsilane with aluminum(III)-acetylacetonate in the presence of zeolite catalyst. A fraction of higher molecular weight polycarbosilane was formed due to the binding of aluminium acetylacetonate radicals with the polycarbosilane backbone. Small amount of Si-O-Si bond was observed in the as-prepared polyaluminocarbosilane as the result. Polyaluminocarbosilane fiber was obtained through a melt spinning and was pyrolyzed and sintered into SiC fiber from $1200{\sim}2000^{\circ}C$ under a controlled atmosphere. The nucleation and growth of ${\beta}-SiC$ grains between $1400{\sim}1600^{\circ}C$ are accompanied with nano pores formation and residual carbon generation. Above $1800^{\circ}C$, SiC fiber could be sintered to give a fully crystallized ${\beta}-SiC$ with some ${\alpha}-SiC$.

Effect of Boron Carbide on Nonuniform Shrinkage during Pressureless Sintering of $\alpha$-SiC ($\alpha$-SiC의 상압소결에서 $B_4C$가 불균일수축에 미치는 영향)

  • 최병철;이문호
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.553-559
    • /
    • 1990
  • The nonuniform shrinkage has been investigaed in pressureless sintering of $\alpha$-SiC, where born carbide and phenolic resin as a carbon source are used as densification aids. Compacted specimens, prepared from the granulated powder, were sintered at 215$0^{\circ}C$ for 30min in Ar atmosphere. Using the fresh and unseasoned graphite crucible, the upwarped specimens were obtained, while specimens were uniformly shrunk in the seasoned crucible. This effect is mainly due to the nonuniform distributjion of boron carbide during heatig, which originates in the reaction of boron carbide with CO gas, providing from the result of SiO2 reduction with carbon during heating.

  • PDF

Microstructure and Strength Property of Reaction Sintered SiC Materials (반응소결 SiC 재료의 미세조직 및 강도 특성)

  • LEE SANG-PILL;SHIN YUN-SEOK;LEE JIN-KYUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.380-385
    • /
    • 2004
  • The efficiency of complex slurry preparation route for developing the high performance SiC matrix of RS-SiCf/SiC composites has been investigated. The green bodies for RS-SiC materials prior to the infiltration of nw/ten silicon were prepared with various C/SiC complex matrix slurries, which associated with both different sizes of starting SiC particles and blending ratios of starting SiC and carbon particles. The characterization of RS-SiC materials was examined by means of SEM, TEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, process optimization methodology is also discussed. The flexural strength of RS-SiC materials greatly depended on the content of residual Si. The decrease of starting SiC particle size in the C/SiC complex slurry was effective for improving the flexural strength of RS-SiC materials.

  • PDF

Reaction Bonded Si3N4 from Si-Polysilazane Mixture (규소 고분자 복합체를 이용한 반응소결 질화규소)

  • Hong, Sung-Jin;Ahn, Hyo-Chang;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.572-577
    • /
    • 2010
  • Reaction-bonded $Si_3N_4$ has cost-reduction merit because inexpensive silicon powder was used as a start material. But its density was not so high enough to be used for structural materials. So the sintered reaction-bonded $Si_3N_4$techniques were developed to solve the low density problem. In this study the sintered reaction-bonded $Si_3N_4$ manufacturing method by using polymer precursor which recently attained significant interest owing to the good shaping and processing ability was proposed. The formations, properties of reaction-bonded $Si_3N_4$ from silicon and polysilazane mixture were investigated. High density reaction-bonded $Si_3N_4$ was manufactured from silicon and silicon-containing preceramic polymers and post-sintering technique. The mixtures of silicon powder and polysilazane were prepared and reaction sintered in $N_2$ atmosphere at $1350^{\circ}C$ and post-sintered at 1600~$1950^{\circ}C$. Density and phase were analyzed and correlated to the resulting material properties.

Manufacture of SiC-TiC System Composite by the Reaction-Bonded Sintering (반응결합 소결에 의한 SiC-TiC계 복합재료 제조)

  • 한인섭;김홍수;우상국;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.849-860
    • /
    • 1994
  • The microstructural evolution and crystalline phases of this infiltration of Ti+Al liquids in TiC, SiC, TiC+C, and SiC+C preforms have been investigated. As the Ti and Al mixing ratio in Ti+Al infiltrated liquid changes, the newly formed reaction products, which were reacted from the Ti+Al liquid with preforms, consisted of three major phases as Ti3AlC, Al2Ti4C2 or Al4C3. The TiC grain shape was changed to spheroid, when Ti3AlC was formed. In case of Al2Ti4C2 formation, the platelet grain was formed from the original TiC grain. When Al4C3 was formed, nodular or intergranular fine-grained Al4C3 was formed around the TiC grain, while the original TiC grain shape was not changed.

  • PDF

Fabrication and Characterization of Reaction Sintered SiC Based Materials (반응소결 SiC 재료의 제조 및 특성)

  • Jin, Joon-Ok;Lee, Sang-Pill;Park, Yi-Hyun;Hwang, Huei-Jin;Yoon, Han-Ki;Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.294-299
    • /
    • 2003
  • The efficiency of complex slurry preparation route for the development of high performance RS-SiCf/SiC composites has been investigated. The green bodies for RS-SiC and RS-SiCf/SiC composite materials prior to the infiltration of molten silicon were prepared with various C/SiC complex matrix slurries, which associated with both different sizes of starting SiC particles and blending ratios of starting SiC and carbon particles. The reinforcing materials in the composite system were uncoated and C coated Tyranno SA SiC fiber. The characterization of RS-SiC and RS-SiCf/SiC composite materials was examined by means of SEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, process optimization methodology is discussed.

  • PDF