• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,820, Processing Time 0.026 seconds

Tantalum Powder Preparation from Ta2O5 by Calciothermic Reduction (칼슘 열환원법에 의한 Ta2O5로부터 Ta분말제조)

  • Ha, Jung-Woo;Sohn, Ho-Sang;Jung, Jae-Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.823-828
    • /
    • 2012
  • Direct reduction of $Ta_2O_5$ using liquid calcium was investigated. The experiment was conducted in a closed stainless steel chamber in an Ar atmosphere for 5-120 minutes. Most of $Ta_2O_5$ was reduced to ${\alpha}-Ta$ in 30 minutes above 1173 K and at a molar ratio of Ca and $Ta_2O_5$ above 10. The particles size increased with the reaction temperature, but it did not change much above 1223 K. The oxygen content of metal Ta was about 1 wt%.

A Synthetic Approach to 11-Oxabicyclo[6.2.1]undecyl Bicyclics

  • 정희선;김훈;강호정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.754-760
    • /
    • 1997
  • Through a sequence of reactions including Diels-Alder cycloaddition of a furan diene as the key step, 11-oxatricyclo[6.2.1.01,6]undecyl rings were synthesized from 5-methylfurfural with the goal of developing a synthetic protocol to 11-oxabicyclo[6.2.1]undecyl system. The strategy to incorporate an oxygen atom at C6 carbon of tricyclic 11 or 16 by Baeyer-Villiger oxidation was unsuccessful, implicating that there is too much steric congestion around the carbonyl ketone. As an alternative approach, bicyclic 23 and 24 were prepared from 2-methylfuran via known tricyclic 20. Cyclization of bicyclic 23 and 24 under several reaction conditions also failed to produce hydroxylated product 25 and 26.

Enantioselective Reduction of Racemic Three-Membered Heterocyclic Compounds. 3. Reaction of Epoxides with B-Isopinocampheyl-9-borabicycolo[3.3.1]nonane-Potassium Hydride and Potassium B-Isopinocampheyl-9 boratabicyclo[3.3.1]nonane Systems$^1$

  • Cha, Jin-Soon;Lee, Kwang-Woo;Yoon, Nung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.421-423
    • /
    • 1987
  • The chiral B-isopinocampheyl-9-borabicyclo[3.3.1]nonane-potassium hydride (IPC-9-BBN-KH) and potassium B-isopinocampheyl-9-boratabicyclo[3.3.1]nonane (K IPC-9-BBNH) systems were applied to the enantioselective reduction of representative racemic epoxides, namely 1,2-epoxybutane, 1,2-epoxyoctane, 3,3-dimethyl-1,2-epoxybutane and styrene oxide. In the case of IPC-9-BBN-KH system, the optical yields are in the range of 8.3-37.4$\%$ ee. However, the system of K IPC-9-BBNH provides significantly lower optical yields, showing 7-22.5$\%$ ee. These results strongly suggest that the enantioselective coordination of chiral organoborane to the epoxy oxygen of racemic epoxides plays an important role in this resolution.

Shock-Tube Study of the Oxidation of Acetaldehyde at High Temperature

  • Won, Seok Jae;Ryu, Ji Cheol;Bae, Jun Hyeon;Kim, Yun Do;Gang, Jun Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.487-492
    • /
    • 2000
  • The combustion characteristics of a mixture of acetaldehyde, oxygen and argon behind a reflected shock wave at temperatures ranging from 1320 to 1897 K at 100 torr were studied. The emission from the OH radical at 306.4 nm and the pressure profile behind the reflected shock were measured to monitor ignition delay time. The ignition delay times were computed from a proposed mechanism of 110 elementary reactions involving 34 species. The simulation and sensitivity analysis confirm that the main channel for oxidation of acetaldehyde at high temperature consists of the Rice-herzfeld mechanism, the decomposition and oxidation of HCO, and the reaction of H with $O_2$.

Hydrogen Production from Methane Reforming Reactions over Ni/MgO Catalyst

  • Wen Sheng Dong;No, Hyeon Seok;Zhong Wen Liu;Jeon, Gi Won;Park, Sang Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1323-1327
    • /
    • 2001
  • The catalyst Ni/MgO (Ni : 15 wt%) has been applied to methane reforming reactions, such as steam reforming of methane (SRM), partial oxidation of methane (POM), and oxy-steam reforming of methane (OSRM). It showed high activity and good stability in all the reforming reactions. Especially, it exhibited stable catalytic performance even in stoichiometric SRM (H2O/CH4 = 1). From TPR and H2 pulse chemisorption results, a strong interaction between NiO and MgO results in a high dispersion of Ni crystallite. Pulse reaction results revealed that both CH4 and O2 are activated on the surface of metallic Ni over the catalyst, and then surface carbon species react with adsorbed oxygen to produce CO.

Effect of Carbon Dioxide in Dehydrogenation of Ethylbenzene to Styrene over Zeolite-Supported Iron Oxide Catalyst

  • 장종산;노제민;박상언;김우영;이철위
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1342-1346
    • /
    • 1998
  • The dehydrogenation of ethylbenzene with carbon dioxide has been carried out over ZSM-5 zeolite-supported iron oxide catalyst as well as commercial catalyst (K-Fe2O3) and unsupported iron oxide (Fe3O4) for comparison. In the dehydrogenation over the ZSM-5 zeolite-supported iron oxide catalyst, ethylbenzene is predominantly converted to styrene by an oxidative pathway in the presence of excess carbon dioxide. Carbon dioxide in this reaction is found to play a role as an oxidant for promoting catalytic activity as well as coke resistance of catalyst. On the other hand, both of commercial catalyst and unsupported Fe2O4 exhibit considerable decrease in catalytic activity under the same condition. It is suggested that an active phase for the dehydrogenation with carbon dioxide over ZSM-5 zeolite-supported iron oxide catalyst would be rather a reduced and isolated magnetite (Fe3O4)-like phase having oxygen deficiency in the zeolite matrix.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction I. TPR Studies of $Mo/\gamma -Al_2O_3$ Catalysts

  • 박진남;김준희;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1363-1368
    • /
    • 1998
  • Mo/γ-Al2O3 catalysts were prepared by impregnation method in various conditions to identify the states of surface Mo species. TPR (Temperature-Programmed Reduction) and Raman spectroscopy were applied to analyze the surface Mo species. TPR analysis revealed that MoO3 was reduced to Mo through MoO2, the intermediate state and the increase of Mo loading enhanced the reducibility of Mo oxide till the formation of monolayer coverage. High temperature calcination induced oxygen defects in MoO3 giving their unstable states for easier reduction. Raman spectroscopy analysis showed that the increase of Mo loading induced the polymeric Mo oxide.

Catalytic Oxygenation of Alkenes and Alkanes by Oxygen Donors Catalyzed by Cobalt-Substituted Polyoxotungstate

  • 남원우;양숙정;김형록
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.625-630
    • /
    • 1996
  • The cobalt-substituted polyoxotungstate [(CoPW11O39)5-] has been used as a catalyst in olefin epoxidation and alkane hydroxylation reactions. The epoxidation of olefins by iodosylbenzene in CH3CN yielded epoxides predominantly with trace amounts of allylic oxidation products. cis-Stilbene was streoselectively oxidized to cis-stilbene oxide with small amounts of trans-stilbene oxide and benzaldehyde formation. The epoxidation of carbamazepine (CBZ) by potassium monopersulfate in aqueous solution gave the corresponding CBZ 10,11-oxide product. Other transition metal-substituted polyoxotungstates (M=Mn2+, Fe2+, Ni2+, and Cu2+) were inactive in the CBZ epoxidation reaction. The cobalt-substituted polyoxotungstate also catalyzed the oxidation of alkanes with m-chloroperbenzoic acid to give the corresponding alcohols and ketones. The presence of CH2Br2 in the hydroxylation of cyclohexane afforded the formation of bromocyclohexane, suggesting the participation of cyclohexyl radical. In the 18O-labeled water experiment, there was no incorporation of 18O into the cyclohexanol product when the hydroxylation of cyclohexane by MCPBA was carried out in the presence of H218O. Some mechanistic aspects are discussed as well.

Relaxation of Photogenerated Carriers under He, $H_2, Co_2 and\; O_2$ on ZnO

  • 한종수;김혜정;진준
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.676-680
    • /
    • 1998
  • The relaxation process of photogenerated carriers was investigated using conductivity measurement on ZnO under He, $H_2,\; CO_2\; and\; O_2$. The process was well explained with the rate constant of reaction or recombination of hole and electron, $k_h \;and\; k_e ( k_h > k_e)$, respectively. Generally, $k_h$ increased with the pressure of the gases. The slope of $k_h$ with respect to the pressure increased in the order of $H_2{\le}He, while $k_h$ of $O_2$ was sensitive to the history of the sample. The relaxation process on ZnO which was exposed to oxygen at 298 K and 573 K was observed during the illumination at 298 K and it was found that the rate constant of hole decreased with illumination time. From the result, it was suggested that the rate constant of photogenerated excess carriers was affected by the surface barrier of the semiconductor.

Theoretical Study on Polymerization of Oxepane High Explosives

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • Oxepane high explosives substituted to explosive group such as azido, nitrato and hydrazino are investigated theoretically the acid catalyzed reaction using the semiempirical MINDO/3, MNDO and AM1 methods to use as the guidelines of high explosives. The nucleophilicity and basicity of oxepane high explosives can be explained by the value of negative charge on oxygen atom of oxepane and the reactivity in propagation step can be represented by the value of positive charge on carbon atom and low electrophile LUMO energy. It was known that carbenium ion was favorable due to the stable energy (19.507~32.101 Kcal/mol) between oxonium ion and carbenium ion in the process of cyclic oxonium ion of oxepane high explosives being converted to open carbenium ion in oxepane high explosives. The value of concentration of cyclic oxonium ion and open carbenium ion in equilibrium status was found to be a major determinant of mechanism, it was expected to react faster in the prepolymer propagation step in SN1 mechanism than in that of $S_N2$.