• Title/Summary/Keyword: Reacting Flow Field

Search Result 39, Processing Time 0.023 seconds

Dynamic Behaviors of a Single Vortex in Counter Non-reacting and Reacting Flow Field (대향류 반응 및 비반응 유동장에서의 단일 와동의 동적 거동)

  • Yoo, Byung-Hun;Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1262-1272
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the dynamic behaviors of a single vortex in counter reacting and non-reacting flow field. A predictor-corrector-type numerical scheme with a low Mach number approximation is used in this simulation. A 16-step augmented reduced mechanism is adopted to treat the chemical reaction. The budget of the vorticity transport equation is examined to reveal a mechanism leading to the formation, destruction and transport of a single vortex according to the direction of vortex generation in reacting and non-reacting flows. The results show that air-side vortex has more larger strength than that of fuel-side vortex in both non-reacting and reacting flows. In reacting flow, the vortex is more dissipated than that in non-reacting flow as the vortex approach the flame. The total circulation in reacting flow, however, is larger than that in non-reacting flow because the convection transport of vorticity becomes much large by the increased velocity near the flame region. It is also found that the stretching and the convection terms mainly generate vorticity in non-reacting and reacting flows. The baroclinic torque term generates vorticity, while the viscous and the volumetric expansion terms attenuate vorticity in reacting flow. Furthermore, the contribution of volumetric expansion term on total circulation for air-side vortex is much larger than that of fuel-side vortex. It is also estimated that the difference of total circulation near stagnation plane according to the direction of vortex generation mainly attributes to the convection term.

Numerical Simulation on a Reacting Flow Field with Various Injection conditions (소형가스터빈용 인젝터의 분무 특성에 따른 반응 유동장 전산 해석)

  • Kim, Sei-Hwan;Jeung, In-Seuck;Park, Hee-Ho;Na, Sang-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.300-303
    • /
    • 2010
  • This work shows the result of numerical simulation on a reacting flow by varying atomization properties which can be obtained from a injector for a small and low power aircraft gas turbine engine. Because the atomization properties mainly affect on the performance of the engine, a lot of efficiency tests are needed when a new injector is developed. Nowadays researches has been actively performed using computational analysis. Using commercial package CFD-ACE+, basic studies on the reacting flow field have been conducted. Those results show that the reaction rate is increased when higher pressure and wider angle spray condition are used. More smaller parcels can also enhance the fuel-air reaction.

  • PDF

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

PARAMETRIC NUMERICAL STUDY OF THE REACTING FLOW FIELD OF A COAL SLURRY ENTRAINED GASIFIER (분류층 석탄 가스화기 반응 유동장 변수 전산해석 연구)

  • Song, W.Y.;Kim, H.S.;Shin, M.S.;Jang, D.S.;Lee, Jae-Goo
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.44-51
    • /
    • 2014
  • Considering the importance of the detailed resolution of the reacting flow field inside a gasifier, the objective of this study lies on to investigate the effect of important variables to influence on the reacting flow and thereby to clarify the physical feature occurring inside the gasifier using a comprehensive gasifier computer program. Thus, in this study the gasification process of a 1.0 ton/day gasifier are numerically modeled using the Fluent code. And parametric investigation has been made in terms of swirl intensity and aspect ratio of the gasifier. Doing this, special attention is given on the detailed change of the reacting flow field inside a gasifier especially with the change of this kind of design and operation parameters. Based on this study, a number of useful conclusions can be drawn in the view of flow pattern inside gasifier together with the consequence of the gasification process caused by the change of the flow pattern. Especially, swirl effect gives rise to a feature of a central delayed recirculation zone, which is different from the typical strong central recirculation appeared near the inlet nozzle. The delayed feature of central recirculation appearance could be explained by the increased axial momentum due to the substantial amount of the presence of the coal slurry occupying over the entire gasifier in gasification process. Further, the changes of flow pattern are explained in detail with the gasifier aspect ratio. In general, the results obtained are physically acceptable in parametric study.

Flow Analysis for the Geometry Optimization of Combustion Chamber of Central Flow Type Waste Incinerator (중간류식 폐기물 소각로 연소실의 최적형상 설계를 위한 유동해석)

  • Lee, Jin-Uk;Kim, Seong-Bae;Yun, Yong-Seung;Kim, Hyeon-Jin;Heo, Il-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.252-259
    • /
    • 2001
  • Computational study has been performed to observe the flow characteristics of combustion chamber for geometrical modification in municipal solid waste incinerator. A series of geometrical modification has been carried out as an attempt to reduce the size of recirculation zone, to obtain uniform flow field in the secondary combustion chamber and to improve the mixing of combustion gas. Two dimensional non-reacting turbulent flow has been studied as the first step to get such goals and the result of design optimization is presented. In addition, three dimensional non-reacting and reacting flow analyses were performed to verify the validity of two dimensional approach.

Application of non-reacting and reacting flow simulation for combustor development (연소기 개발에서 시뮬레이션 기술의 활용)

  • Jung, Seungchai;Yang, Siwon;Kim, Shaun;Park, Heeho;Ahn, Chulju;Yoon, Samson
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.123-126
    • /
    • 2013
  • Combustor development requires high fidelity simulation capable of predicting recirculation zone (RZ), temperature field, and pollutant emission. Swirling flow is widely used in combustor for its benefits in efficient mixing and flame stabilization by RZ. Large eddy simulation (LES) is used to calculate swirling flow in an expanding pipe [1], and shows higher accuracy than RANS. Reactive flow modeling using LES and flamelet model is validated with experiments by Barlow et al. [4] and Masri et al. [3]. Finally, heat transfer simulation of Samsung Techwin's combustor liner is presented.

  • PDF

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

Numerical Analysis on the Mode Transition of Integrated Rocket-Ramjet and Unstable Combusting Flow-Field (일체형 로켓-램제트 모드 천이 및 불안정 연소 유동장 해석)

  • Ko Hyun;Park Byung-Hoon;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.334-342
    • /
    • 2005
  • A numerical analysis is performed using two dimensional axisymmetric RANS (Reynolds Averaged Navier-Stokes) equations system on the transition sequence of the Integrated Rocket Ramjet and the unsteady reacting flow-field in a ramjet combustor during unstable combustion. The mode transition of an axisymmetric ramjet is numerically simulated starting from the initial condition of the boost end phase of the entire ramjet. The unsteady reacting flow-field within combustor is computed for varying injection area. In calculation results of the transition, the terminal normal shock is occurred at the downstream of diffuser throat section and no notable combustor pressure oscillation is observed after certain time of the inlet port cover open. For the case of a small injection area at the same equivalence ratio, periodic pressure oscillation in the combustor leads to the terminal shock expulsion from the inlet and hence the buzz instability occurred.

  • PDF

Numerical Study on the Reacting Flow Field abound Rectangular Cross Section Bluff Body (사각 둔각물체 주위의 반응유동장에 대한 수치적 연구)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.64-69
    • /
    • 2013
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to simulate an engine nacelle fire and to complement the previous experimental results of the bluff body stabilized flames. Fire Dynamic Simulator (FDS) based on the Direct Numerical Simulation (DNS) was employed to clarify the characteristics of reacting flow around bluff body. The overall reaction was considered and the constant for reaction was determined from flame extinction limits of experimental results. The air used atmosphere and the fuel used methane. For both fuel ejection configurations against an oxidizer stream, the flame stability and flame mode were affected mainly by vortex structure near bluff body. In the coflow configuration, air velocity at the flame extinction limit are increased with fuel velocity, which is comparable to the experiment results. Comparing with the isothermal flow field, the reacting flow produces a weak and small recirculation zone, which is result in the reductions of density and momentum due to temperature increase by reaction in the wake zone.

Design of Serpentine Flow-field Stimulating Under-rib Convection for Improving the Water Discharge Performance in Polymer Electrolyte fuel cells (고분자전해질 연료전지의 물 배출 성능 향상을 위한 촉매층 공급 대류 촉진 사행성 유동장 설계)

  • Choi, Kap-Seung;Bae, Byeong-Cheol;Park, Ki-Won;Kim, Hyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2012
  • Proton exchange membrane fuel cell performance is changed by the complicated physical phenomenon. In this study, water discharge performance of proton exchange membrane fuel cell were performed numerically to compare serpentine channel flow fields of 5-pass 4-turn serpentine and 25 $cm^2$ reaction surface between with and without sub-channel at the rib. Through the supplement of sub channel flow field, it is shown from the results that water removal characteristic inside channel improves because the flow direction of under-rib convection is changed into the sub channel. Reacting gases supplied from entrance disperse into sub channel flow field and electrochemical reaction occurs uniformly over the reaction surface. The results obtained that total current density distributions become uniform because residence time of reacting gases traveling to sub-channel flow field is longer than to main channel.