KIPS Transactions on Software and Data Engineering
/
v.9
no.10
/
pp.303-308
/
2020
The ReLU(Rectified Linear Unit) function has been dominantly used as a standard activation function in most deep artificial neural network models since it was proposed. Later, Leaky ReLU, Swish, and Mish activation functions were presented to replace ReLU, which showed improved performance over existing ReLU function in image classification task. Therefore, we recognized the need to experiment with whether performance improvements could be achieved by replacing the RELU with other activation functions in the super resolution task. In this paper, the performance was compared by changing the activation functions in EDSR model, which showed stable performance in the super resolution task. As a result, in experiments conducted with changing the activation function of EDSR, when the resolution was converted to double, the existing activation function, ReLU, showed similar or higher performance than the other activation functions used in the experiment. When the resolution was converted to four times, Leaky ReLU and Swish function showed slightly improved performance over ReLU. PSNR and SSIM, which can quantitatively evaluate the quality of images, were able to identify average performance improvements of 0.06%, 0.05% when using Leaky ReLU, and average performance improvements of 0.06% and 0.03% when using Swish. When the resolution is converted to eight times, the Mish function shows a slight average performance improvement over the ReLU. Using Mish, PSNR and SSIM were able to identify an average of 0.06% and 0.02% performance improvement over the RELU. In conclusion, Leaky ReLU and Swish showed improved performance compared to ReLU for super resolution that converts resolution four times and Mish showed improved performance compared to ReLU for super resolution that converts resolution eight times. In future study, we should conduct comparative experiments to replace activation functions with Leaky ReLU, Swish and Mish to improve performance in other super resolution models.
ReLU(Rectified Linear Unit) 함수는 제안된 이후로 대부분의 깊은 인공신경망 모델들에서 표준 활성함수로써 지배적으로 사용되었다. 이후에 ReLU 를 대체하기 위해 Leaky ReLU, Swish, Mish 활성함수가 제시되었는데, 이들은 영상 분류 과업에서 기존 ReLU 함수 보다 향상된 성능을 보였다. 따라서 초해상화(Super Resolution) 과업에서도 ReLU 를 다른 활성함수들로 대체하여 성능 향상을 얻을 수 있는지 실험해볼 필요성을 느꼈다. 본 연구에서는 초해상화 과업에서 안정적인 성능을 보이는 EDSR(Enhanced Deep Super-Resolution Network) 모델의 활성함수들을 변경하면서 성능을 비교하였다. 결과적으로 EDSR 의 활성함수를 변경하면서 진행한 실험에서 해상도를 2 배로 변환하는 경우, 기존 활성함수인 ReLU 가 실험에 사용된 다른 활성함수들 보다 비슷하거나 높은 성능을 보였다. 하지만 해상도를 4 배로 변환하는 경우에서는 Leaky ReLU 와 Swish 함수가 기존 ReLU 함수대비 다소 향상된 성능을 보임을 확인하였다. 구체적으로 Leaky ReLU 를 사용했을 때 기존 ReLU 보다 영상의 품질을 정량적으로 평가할 수 있는 PSNR 과 SSIM 평가지표가 평균 0.06%, 0.05%, Swish 를 사용했을 때는 평균 0.06%, 0.03%의 성능 향상을 확인할 수 있었다. 4 배의 해상도를 높이는 초해상화의 경우, Leaky ReLU 와 Swish 가 ReLU 대비 향상된 성능을 보였기 때문에 향후 연구에서는 다른 초해상화 모델에서도 성능 향상을 위해 활성함수를 Leaky ReLU 나 Swish 로 대체하는 비교실험을 수행하는 것도 필요하다고 판단된다.
본 연구는 인공 신경망 '추론'과정에서 연산량을 줄이는 아이디어를 고안했고, 이를 구현하여 기존 알고리즘과 성능을 비교 분석하였다. 특정 데이터 셋에 대한 실험을 통해 ReLU(Rectified Linear Unit) 함수의 결과를 분석했고, 그 결과를 통해 ReLU 함수의 결과가 예측가능함을 확인했다. 또한 인공 신경망 알고리즘에 ReLU 함수의 결과 예측 기법을 적용하여 인공 신경망 추론과정을 최적화했다. 이 아이디어를 기반으로 구현된 인공 신경망은 기존 아이디어로 구현된 인공 신경망에 비해 약 3배 빠른 성능을 보였다.
International journal of advanced smart convergence
/
v.13
no.2
/
pp.80-87
/
2024
This paper focuses on improving accuracy in constrained computing settings by employing the ReLU (Rectified Linear Unit) activation function. The research conducted involves modifying parameters of the ReLU function and comparing performance in terms of accuracy and computational time. This paper specifically focuses on optimizing ReLU in the context of a Multilayer Perceptron (MLP) by determining the ideal values for features such as the dimensions of the linear layers and the learning rate (Ir). In order to optimize performance, the paper experiments with adjusting parameters like the size dimensions of linear layers and Ir values to induce the best performance outcomes. The experimental results show that using ReLU alone yielded the highest accuracy of 96.7% when the dimension sizes were 30 - 10 and the Ir value was 1. When combining ReLU with the Adam optimizer, the optimal model configuration had dimension sizes of 60 - 40 - 10, and an Ir value of 0.001, which resulted in the highest accuracy of 97.07%.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.10
/
pp.75-80
/
2017
In this paper, we describe the effect of the regularization method and the network with identity mapping on the performance of the activation functions in deep convolutional neural networks. The activation functions act as nonlinear transformation. In early convolutional neural networks, a sigmoid function was used. To overcome the problem of the existing activation functions such as gradient vanishing, various activation functions were developed such as ReLU, Leaky ReLU, parametric ReLU, and ELU. To solve the overfitting problem, regularization methods such as dropout and batch normalization were developed on the sidelines of the activation functions. Additionally, data augmentation is usually applied to deep learning to avoid overfitting. The activation functions mentioned above have different characteristics, but the new regularization method and the network with identity mapping were validated only using ReLU. Therefore, we have experimentally shown the effect of the regularization method and the network with identity mapping on the performance of the activation functions. Through this analysis, we have presented the tendency of the performance of activation functions according to regularization and identity mapping. These results will reduce the number of training trials to find the best activation function.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.35-36
/
2023
본 논문에서는 OpenAI Gym 환경에서 제공하는 Acrobot-v1에 대해 DQN(Deep Q-Networks) 강화학습으로 학습시키고, 이 때 적용되는 활성화함수의 성능을 비교분석하였다. DQN 강화학습에 적용한 활성화함수는 ReLU, ReakyReLU, ELU, SELU 그리고 softplus 함수이다. 실험 결과 평균적으로 Leaky_ReLU 활성화함수를 적용했을 때의 보상 값이 높았고, 최대 보상 값은 SELU 활성화 함수를 적용할 때로 나타났다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.25-26
/
2023
본 논문에서는 OpenAI Gym 환경에서 제공하는 CartPole-v1에 대해 강화학습을 통해 에이전트를 학습시키고, 학습에 적용되는 활성화함수의 성능을 비교분석하였다. 본 논문에서 적용한 활성화함수는 Sigmoid, ReLU, ReakyReLU 그리고 softplus 함수이며, 각 활성화함수를 DQN(Deep Q-Networks) 강화학습에 적용했을 때 보상 값을 비교하였다. 실험결과 ReLU 활성화함수를 적용하였을 때의 보상이 가장 높은 것을 알 수 있었다.
International journal of advanced smart convergence
/
v.6
no.4
/
pp.73-79
/
2017
The Convolutional Neural Network (CNN) has shown an excellent performance in computer vision task. Applications of CNN include image classification, object detection in images, autonomous driving, etc. This paper will evaluate the performance of CNN model with ReLU and SELU as activation function. The evaluation will be performed on four different choices of hyperparameter which are initialization method, network configuration, optimization technique, and regularization. We did experiment on each choice of hyperparameter and show how it influences the network convergence and test accuracy. In this experiment, we also discover performance improvement when using SELU as activation function over ReLU.
Recently, computer vision application is increasing by using CNN which is one of the deep learning algorithms. However, CNN does not provide perfect classification performance due to gradient vanishing problem. Most of CNN algorithms use an activation function called ReLU to mitigate the gradient vanishing problem. In this study, four activation functions that can replace ReLU were applied to four different structural networks. Experimental results show that ReLU has the lowest performance in accuracy, loss rate, and speed of initial learning convergence from 20 experiments. It is concluded that the optimal activation function varied from network to network but the four activation functions were higher than ReLU.
스발바드 서측에 위치하는 스피츠버겐 하부의 암석권맨틀의 분화시기를 규명하기 위하여, 두 개의 독립적인 방사성동위원소 시스템인 Lu-Hf과 Re-Os 시스템을 스피넬 페리도타이트(spinel peridotite)에 활용하였다. 전암에 대한 Re-Os 계통(Re-Os 에러크론, 알루미노크론, Re-결핍연대 등)은 연구지역의 페리도타이트가 대류하는 맨틀로부터 고기원생대/후기시생대에 분리되었음을 지시한다. 흥미롭게도 이런 연대는 페리도타이트내 단사휘석 결정들에 대하여 얻어진 Lu-Hf 에러크론 연대와 일치한다. 또한 시료 내에 지구화학적으로 기록된 현무암질 액의 결핍정도 역시 계통적으로 위의 연대를 지지한다. 위 연대는 스피츠버겐 서측부에 보고된 가장 오래된 지각의 연대와 일치한다. 따라서 연구지역의 암석권맨틀이 연약권으로부터 분리된 것은 접촉하고 있는 지각과 동시기적으로 이루어진 사건임을 알 수 있다. 연구지역은 팔레오세 이래로 복잡한 지구조적 응력장 변화(압축에서 신장환경으로의 변화)를 겪었다. 그럼에도 불구하고 지각과 커플링된 암석권맨틀이 현존한다는 것은 연구지역내 응력장변화가 대규모의 암석권 디라미네이션(delamination)을 유발하지는 않았다는 것을 의미한다. 그러므로 북극권의 화산활동을 설명하기 위하여 북극권 상부맨틀에 존재한다고 알려진 듀팔(DUPAL) 같은 부화된 물질의 성인으로 일부의 연구자들이 주장하여 온 디라미네이션된 암석권맨틀의 존재는 설득력이 없다고 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.