• Title/Summary/Keyword: Re-oxidation

Search Result 106, Processing Time 0.047 seconds

Initial oxidation behavior in High temperature of low carbonsteel containing small amount Ni element. (미량 Ni 함유 저 합금강의 고온초기 산화거동)

  • 손근수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.179-184
    • /
    • 1999
  • When the steel containing Si is oxidated in hi temperature, Re2O3, Red scale is made on the metal side as the spike phase, and this scale invasion into matrix. Therefore, it affects the feature, after rolling. It is reported that the role of Si is FeO/Fe2SiO4 eutectic compound, but Si can not affect pure iron independently. There must be Ni, then the spike phase can exist. Prominence and depression made by Ni that is necessity at the process to work iron. Therefore, in this study after the change of the amount of Ni in pure iron and steel and oxidation, the structure of the oxide and the surface, and the distribution of the elements were considered. In conclusion, at 100$0^{\circ}C$, 110$0^{\circ}C$, 120$0^{\circ}C$ the curves of oxidation weight are all S curves. Especially, in the beginning of oxidation as the amount of Ni increase, the amount of oxidation also increase. Practical steel has less oxidation than pure steel added Ni. There is much FeO in Fe-Ni alloy, compare to practical steel which has much Fe3O4. Especially, we could know considerable Ni was concentrated on the metal side in Fe-Ni alloy, practical steel. and the surface of the scale.

  • PDF

Preparation of Highly Active Metathesis Catalyst from Rhenium Carbonyl and its Catalysis (레늄카보닐에 의한 고활성 메타세시스 촉매제조 및 그의 촉매작용)

  • Ahn, Ho-Geun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.115-120
    • /
    • 1998
  • The surface chemistry of $Re_2(CO)_{10}$ deposition for preparing highly dispersed rhenium catalysts and the formation of active site for the metathesis were studied. Alumina as support was treated at 1223K(DA) and 773k(PDA), respectively. The metathesis activity of the catalysts at 298K was measured by using pure propene under atmospheric pressure. The oxidation number of rhenium on PDA was very high, and that on DA was zero-valent with highly dispersed state. The prepared Re/DA catalyst was easily activated by treating with oxygen gas at low temperatures after thermal decomposition at high temperatures. The activity of Re/DA catalyst, even with very low rhenium loading, was much higher than that of Re/PDA or conventional $Re_2O_7/Al_2O_3$ catalysts. Therefore, rhenium carbonyl was effective for preparing a highy active metathesis catalyst with very low rhenium loading. Rhenium ion on Re/DA catalyst seemed to be bonded to two oxygen atoms on DA surface, that is, two-valent. The two-valent rhenium ion was changed to about six-valent by treating with oxygen. It could be considered that propene metathesis occurred through carbene complex which was formed on the six-valent rhenium ions.

  • PDF

Influence of Cooking, Storage Period, and Re-heating on Production of Cholesterol Oxides in Chicken Meat

  • Choe, Juhui;Min, Joong-Seok;Lee, Sang-Ok;Khan, Muhammad Issa;Yim, Dong Gyun;Lee, Mooha;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.433-441
    • /
    • 2018
  • The objective of present study was to investigate the effect of cooking and their combinations with re-heating methods on the formation of cholesterol oxidation products (COPs) in stored chicken thigh meat. Pan roasting, steaming, oven grilling, charcoal grilling, and microwaving were used for cooking. Re-heating of samples was done using the same cooking methods or microwaving after 3 and 6 d of refrigerated storage. Cooking and re-heating resulted in reduction of crude fat and cholesterol contents of chicken thigh meat depending on storage period before re-heating. Cooking and storage period had no influence on the total amount of COPs. The highest total amount of COPs was observed in meat samples cooked by steaming and reheated by microwaving after 6 d of storage, which showed similar value to raw chicken meat stored for 6 days. However, different re-heating methods formed different types of COPs depending on storage period before re-heating. The high amount (p<0.05) of 25-hydroxycholesterol or ${\alpha}-epoxide$ was detected in meat samples reheated by steaming or microwaving at 3 or 6 d of storage after steamed cooking, respectively. As a result, the combination of steaming and re-heating with microwaving could increase the total amount of COPs in chicken thigh meat and different cooking/re-heating methods could form different types of COPs, even though no significant difference in the total amount of COPs depending on storage period.

High temperature oxidation of MCrAlY thermal barrier coating (MCrAlY 열차폐 코팅의 고온산화)

  • 고재황;이동복
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.219-219
    • /
    • 2003
  • HVOF(High Velocity Oxygen Fuel)법을 사용한 MCrAlY(M=Ni, Co, Fe)계 열차폐 코팅(thermal barrier coating)은 열기관 내부의 극심한 환경 부하에 대해 구조물 표면에 열적, 화학적 장벽을 형성함으로써 구조물의 내구성을 향상시킨다 이와 동시에 열차폐 효과는 구조물의 온도상승 없이 내부 가동 온도를 높일 수 있게 함으로써 열효율을 상승시키고 연료 효율을 높여 가동비용 절감을 이룰 수 있는 동시에 고 연소를 통한 오염원의 배출을 감소시킬 수 있다. 본 연구에서는 $H_2O$$_2$=5:1 분위기 하에서 HVOF법을 사용하여 Hastelloy-X 기판위에 125$\mu\textrm{m}$의 두께로 다음 5종류의 (Ni, Co, Cr)계 MCrAlY 코팅을 용사시켰다. 준비된 (Ni, Co)-Cr-Al-(Y, Ta, Re), (Ni, Co)-Cr-Al-(Y, Re), (Ni, Co)-Cr-Al-(Y, Ta), (Ni, Co)-Cr-Al-Y, (Ni,Co)-Cr-Al-Ir 코팅시편에 대한 산화성질을 조사하기 위해 대기 중 1000, 1100, 120$0^{\circ}C$에서 50, 100, 150, 200시간 등온실험(Isothermal oxidation)을 실시하였고, XRD, SEM/EDS, EPMA를 이용하여 생성된 산화막과 코팅 시편의 조직 변화를 조사하였다. 산화온도와 산화시간이 증가할수록 산화막의 박리가 많이 발생하였으며, 분석 결과 미세하게 분포된 a-Al$_2$O$_3$ 입자, NiCr$_2$O$_4$스피넬 상, 미세한 Cr$_2$O$_3$가 관찰되었고, 코팅 조성 변화에 따라 형성되는 이들 산화물의 존재비가 달라졌으며, 산화온도가 높아질수록 산화속도가 가속화되었다.

  • PDF

Effects of Electrical Stimulation on Lipid Oxidation and Warmed-over Flavor of Precooked Roast Beef

  • Cheng, Jen-Hua;Ockerman, Herbert W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.282-286
    • /
    • 2013
  • Many manufacturing processes damage the structure of meat products and this often contributes to lipid oxidation which could influence warmed-over flavor (WOF) in precooked beef that is reheated beef. Electrical stimulation causes contraction of muscles and improves tissue tenderization. The purpose of this study was to evaluate the rate of lipid oxidation or warmed-over flavor that could be affected by electrical stimulation of precooked roast beef after refrigerated storage and reheating. The results show that there was no significant difference between chemical compositions and cooking yields when comparing non-electrically stimulated and electrically stimulated roast beef. Moreover, electrical stimulation had no significant effect on oxidative stability and off-flavor problems of precooked roast beef as evaluated by thiobarbituric acid reactive substances (TBARS) and sensory test (warmed-over aroma and warmed-over flavor). However, there was an increased undesirable WOF and a decrease in tenderness for both ES and Non-ES treatments over refrigerated storage time. Electrical stimulation did cause reactions of amino acids or other compounds to decrease the desirable beef flavor in re-cooked meat.

Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated (Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가)

  • Oh, Mi Young;Ishihara, Tatsumi;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Surface Preparation of III-V Semiconductors

  • Im, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.1-86.1
    • /
    • 2015
  • As the feature size of Si-based semiconductor shrinks to nanometer scale, we are facing to the problems such as short channel effect and leakage current. One of the solutions to cope with those issues is to bring III-V compound semiconductors to the semiconductor structures, because III-V compound semiconductors have much higher carrier mobility than Si. However, introduction of III-V semiconductors to the current Si-based manufacturing process requires great challenge in the development of process integration, since they exhibit totally different physical and chemical properties from Si. For example, epitaxial growth, surface preparation and wet etching of III-V semiconductors have to be optimized for production. In addition, oxidation mechanisms of III-V semiconductors should be elucidated and re-growth of native oxide should be controlled. In this study, surface preparation methods of various III-V compound semiconductors such as GaAs, InAs, and GaSb are introduced in terms of i) how their surfaces are modified after different chemical treatments, ii) how they will be re-oxidized after chemical treatments, and iii) is there any effect of surface orientation on the surface preparation and re-growth of oxide. Surface termination and behaviors on those semiconductors were observed by MIR-FTIR, XPS, ellipsometer, and contact angle measurements. In addition, photoresist stripping process on III-V semiconductor is also studied, because there is a chance that a conventional photoresist stripping process can attack III-V semiconductor surfaces. Based on the Hansen theory various organic solvents such as 1-methyl-2-pyrrolydone, dimethyl sulfoxide, benzyl alcohol, and propylene carbonate, were selected to remove photoresists with and without ion implantation. Although SPM and DIO3 caused etching and/or surface roughening of III-V semiconductor surface, organic solvents could remove I-line photoresist without attack of III-V semiconductor surface. The behavior of photoresist removal depends on the solvent temperature and ion implantation dose.

  • PDF

A Study on the Effectiveness of Remanufacturing Technology for the Diesel Oxidation Catalyst(DOC) Deactivated by Diesel Exhaust Gas (경유차 매연저감장치에 의해 비활성화된 DOC촉매의 재제조 효과에 관한 연구)

  • Park, Hea-Kyung
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2010
  • The deactivated diesel oxidation catalyst(DOC) was remanufactured by ultrasonic wave treatment with various solutions, followed by active component re-impregnation. The catalytic performance and surface properties of remanufactured DOC were studied at various remanufacturing conditions. The proper ultrasonic-wave cleaning time at various solutions and optimal re-impregnation amounts of active component for the best catalytic performance were investigated. The catalytic performance tests on the conversions of CO and THC(total hydrocarbon) were also carried out at various temperatures by catalytic reaction test unit using bypass gas from the diesel engine dynamo system. It was found that the catalytic performance of DOC remanufactured with the high-temperature air washing, ultrasonic wave cleaning at acidic/basic solutions and active component re-impregnation method was recovered to 90% level of its activity compared to that of the fresh DOC, which was caused by removing the deactivating materials from the surface of the DOC through the analyses of catalyst performance test and their characterization by Optical microscope, EDX, ICP, TGA, and porosimeter.

VERIFICATION OF COSMOS CODE USING IN-PILE DATA OF RE-INSTRUMENTED MOX FUELS

  • Lee, Byung-Ho;Koo, Yang-Hyun;Cheon, Jin-Sik;Oh, Je-Yong;Joo, Hyung-Kook;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.05a
    • /
    • pp.242-242
    • /
    • 2002
  • Two MIMAS MaX fuel rods base-irradiated in a commercial PWR have been reinstrumented and irradiated at a test reactor. The fabrication data for two MOX roda are characterized together with base irradiation information. Both Rods were reinstrumented to be fitted with thermocouple to measure centerline temperature of fuel. One rod was equipped with pressure transducer for rod internal pressure whereas the other with cladding elongation detector. The post irradiation examinations for various items were performed to determine fuel and cladding in-pile behavior after base irradiation. By using well characterized fabrication and re-instrumentation data and power history, the fuel performance code, COSMOS, is verified with measured in-pile and PIE information. The COMaS code shows good agreement for the cladding oxidation and creep, and fission gas release when compared with PIE dad a after base irradiaton. Based on the re-instrumention information and power history measured in-pile, the COSMOS predicts re-instrumented in-pile thermal behaviour during power up-ramp and steady operation with acceptable accuracy. The rod internal pressure is also well simulated by COSMOS code. Therfore, with all the other verification by COSMOS code up to now, it can be concluded that COSMOS fuel performance code is applicable for the design and license for MaX fuel rods up to high burnup.

  • PDF

Catalytic Oxidation of Toluene over Mn-Ce/${\gamma}-Al_2O_3$ Catalyst Doped with Ce (Ce가 첨가된 Mn-Ce/${\gamma}-Al_2O_3$ 촉매상에서 톨루엔의 촉매 산화 반응)

  • Cheon, Tae-Jin;Kim, Hye-Jin;Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.513-518
    • /
    • 2005
  • Catalytic oxidation of toluene on the manganese oxide catalysts and manganese-cerium oxide catalysts was investigated. The catalysts were characterised by X-ray diffraction(XRD), thermo gravimetric analyzer(TGA), toluene-temperature program reduction(Toluene-TPR). We found that the optimal manganese content was 18.2 wt.% and the optimal cerium content was 10.0 wt.% at catalytic oxidation of toluene. It is shown that ceria improves the activity of manganese oxide phases. From the XRD results, it was estimated that $MnO_2$ phase was active site in the monometallic and bimetallic catalysts. From the TGA and Toluene-TPR results, it show that ceria improves the mobility of the lattice oxygen, adequate oxidation state of the active phase, reduction ability at low temperature, and re-oxidation of the active site.