• Title/Summary/Keyword: Re-heater

Search Result 23, Processing Time 0.047 seconds

A Study on the Characteristics of Heating Performance of High-Performance Heat Pump with VI cycle using Re-Heater (재열기를 사용한 고성능 VI 사이클 열펌프의 난방 성능 특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.69-75
    • /
    • 2015
  • In this study, the characteristics of heating performance of a high-performance air-cooled heat pump with vapor-injection(VI) cycle using re-heater was investigated experimentally. Devices used in the experiment is consist of a VI compressor, condenser, oil separator, refrigerant (economizer outlet refrigerant) re-heater, economizer, evaporator. And R410A was used as a working fluid. The experiment was conducted with two cycles(cycles A and B) for investigating heating performance. In case of cycle B, heat exchange was conducted by re-heater between outlet refrigerant of compressor and suction refrigerant of the VI system(Fig.1, re-heater). But the re-heater was not used in case of cycle A. As a result of this experiment, discharge temperature of refrigerator in compressor was shown higher value, when the cycle B was conducted, because of the heat exchange between suction refrigerant of VI cycle and outlet refrigerant of compressor in the re-heater than cycle A that was not use re-heater. it means that liquid hammer and the decrement of heating performance can be decreased by using re-heater. Also, Heating coefficient of performance(COPh) was shown about 2.98 in Cycle B which was 4% higher than Cycle A and from these results, It was confirmed that the improvement of the heating performance of heat pump with VI cycle can be achieved by applying re-heater.

Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted (태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

Operating characteristics of 3RT heat pumps

  • Moon, Chang-Uk;Choi, Kwang-Hwan;Yoon, Jung-In;Jeon, Min-Ju;Heo, Seong-Kwan;Sung, Yo-Han;Park, Sung-Hyeon;Lee, Jin-Kook;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.140-145
    • /
    • 2017
  • Newly designed vapor-injection heat pumps have been proposed and analyzed in the present study. An economizer-type vapor-injection (V-I) system has been employed as the standard system because of its reliability and simple control method. The V-I system has a re-cooler and re-heater for cooling and heating, respectively. Solar panels have been installed in the V-I heat pump as well as in the re-heater in order to enhance heating capacity and performance. R410A has been employed as a working fluid and performance analysis has been conducted under various conditions. Results are summarized as follows: (1) The V-I system with the re-cooler yielded a marginally higher coefficient of performance (COP) than the conventional V-I refrigeration system. (2) By increasing the re-cooler cooling capacity, enhanced system performance as compared to the conventional V-I system was observed. (3) The re-heater negatively affected the system performance; hence, the V-I heat pump with the re-heater yielded a lower COP than that of the conventional V-I heat pump used for heating. (4) Although the solar panels increased the system performance, this increase could not offset performance degradation by the re-heater.

Design and Performance Evaluation of Retraction-Type Actuators with Displacement Amplification Mechanism Based on Thermomechanical Metamaterial

  • Cho, Yelin;Lee, Euntaek;Kim, Yongdae
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.28-35
    • /
    • 2020
  • In this paper, we present a design for a retraction-type actuator (ReACT) that has the characteristics of both thermomechanical metamaterials and displacement amplification mechanisms. The ReACT consists of an actuating bar, a diamond-shaped displacement amplification (DA) structure, and a slot for loading thin-film heaters formed through the actuating bar. When power is supplied to the thin film heater, the actuating bars contacting the heater thermally expand, and the diamond-shaped DA structures retract in the longitudinal direction. The performance characteristics of the ReACT, such as temperature distribution and retracting displacement, were calculated with thermomechanical analysis methods using the finite element method (FEM). Subsequently, the ReACTs were fabricated using a polymer-based 3D printer that can easily execute complex structures, and the performance of the ReACT was evaluated through repeated tests under various temperature conditions. The results of the performance evaluation were compared with the results of the FEM analysis.

Experimental study of bubble behaviors and CHF on printed circuit board (PCB) in saturated pool water at various inclination angles

  • Tanjung, Elvira F.;Alunda, Bernard O.;Lee, Yong Joong;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1068-1078
    • /
    • 2018
  • Experiments were performed to investigate bubble behaviors and pool boiling Critical Heat Flux (CHF) on a thin flat rectangular copper heater fabricated on Printed Circuit Board (PCB), at various inclination angles. The surface inclination angles were $0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, and $180^{\circ}$. Results showed the Onset of Nucleate Boiling (ONB) heat flux increased with increasing heater orientation from $0^{\circ}$ to $90^{\circ}$, while early ONB occurred when the heater faced downwards ($135^{\circ}$ and $180^{\circ}$). The nucleate boiling was observed to be unstable at low heat flux (1-21% of CHF) and changed into typical boiling when the heat flux was above 21% of CHF. The result shows the CHF decreased with increasing heater orientation from $0^{\circ}$ to $180^{\circ}$. In addition, the bubble departure diameter at the heater facing upwards ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$) was more prominent compared to that of the heater facing downward ($135^{\circ}$). The nucleation site density also observed increased with increasing heat flux. Moreover, the departed bubbles with larger size were observed to require a longer time to re-heat and activate new nucleation sites. These results proved that the ONB, CHF, and bubble dynamics were strongly dependent on the heater surface orientation.

Building Energy Management System Coupling with Renewable Energy System

  • Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.34 no.9
    • /
    • pp.705-709
    • /
    • 2010
  • Buildings nowadays are increasingly expected to need higher and more economic performance requirements. Energy consumption in buildings accounts for over 30% of total energy use. The Building Energy Management System (BEMS) and renewable energy (RE) technologies are considered as a potential measure to improve energy efficiency and reduce use of grid-power. It is, however, a challenge to utilise the intermittent energy supply of RE in building energy systems. This paper presents an experimental study on a RE-embedded BEMS. A control algorithm for the RE-embedded BEMS was designed to maximise the utilisation of RE and eventually to reduce electrical utility bill. The proposed system is tested at a laboratorial chamber with an air conditioner, fan and heater. The contribution of RE in building energy system is discussed to this end.

A Numerical Study on the Effect of Fin Pitch and Fin Array on the Heat Transfer Performance of a Pre-heater (휜의 피치 및 배열 방식에 따른 프리히터의 전열 성능에 관한 연구)

  • Yoo, Ji Hoon;Kim, Kuisoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.40-47
    • /
    • 2013
  • In this paper, a numerical study was performed to investigate the performance characteristics of a pre-heater. The effects of fin pitch and fin array type(in-line, staggered, leaned array) were reported in terms of Colburn j-factor and Fanning friction factor f, as a function of Re. Three-dimensional numerical simulation has been performed by using flow analysis program, FLUENT 13.0. The results show that Colburn j-factor decreases with the decrease of fin pitch attached in the annular tube. But the fin pitch has little effect on f-factor. The staggered array and leaned array show improved heat transfer performance compared with in-line array, so that Colburn j-factor was increased. It also shows that the f-factor of leaned array is the highest in the studied range of Reynolds number.

Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media (고점성 낮은표면장력 매체 기포탑에서 열전달)

  • Kim, Wan Tae;Lim, Dae Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.516-521
    • /
    • 2014
  • Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02~0.1 m/s), liquid viscosity ($0.1{\sim}0.3Pa{\cdot}s$) and surface tension ($66.1{\sim}72.9{\times}10^{-3}N/m$) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; $$h=2502U^{0.236}_{G}{\mu}^{-0.250}_{L}{\sigma}^{-0.028}_L$$ $$Nu=325Re^{0.180}Pr^{-0.067}We^{0.028}$$.

Implementation of Fuzzy Logic Control for Air Conditioning Systems

  • Mongkolwongrojn, M.;Sarawit, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1264-1267
    • /
    • 2005
  • Fuzzy logic control has been widely applied for handling the system which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters, several fuzzy logic controllers have been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control both in door temperature and humidity in the air conditioning systems. The manipulating variables are speed of compressor, heater and supply air flow rate. The microcomputer was used to interface with in system. The experimental results show the superior of multivaiable fuzzy logic control to keep room temperature and humidity in air conditioning system for the best comfortable.

  • PDF

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle (작동유체 및 사이클에 따른 해양온도차발전용 유기랭킨사이클의 성능분석)

  • Kim, Jun-Seong;Kim, Do-Yeop;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.881-889
    • /
    • 2015
  • Ocean thermal energy conversion is an organic Rankine cycle that generates power using the temperature difference between surface water and deep water. This study analyzes the thermodynamic efficiency of the cycle, which strongly depends on the working fluid and the cycle configuration. Cycles studied included the classical simple Rankine cycle, Rankine cycles with an open feedwater heater and an integrated regenerator, as well as the Kalina cycle. Nine kinds of simple refrigerants and three kinds of mixed refrigerants were investigated as the working fluids in this study. Pinch-point analysis that set a constant pinch-point temperature difference was applied in the performance analysis of the cycle. Results showed that thermodynamic efficiency was best when RE245fa2 was used as the working fluid with the simple Rankine cycle, the Rankine cycles with an open feedwater heater and an integrated regenerator, and when the mixing ratio of $NH_3/H_2O$ was 0.9:0.1 in the Kalina cycle. If the Rankine cycles with an open feedwater heater, an integrated regenerator, and the Kalina cycle were used for ocean thermal energy conversion, efficiency increases could be expected to be approximately 2.0%, 1.0%, and 10.0%, respectively, compared to the simple Rankine cycle.