• 제목/요약/키워드: Re-corrosion

검색결과 109건 처리시간 0.023초

국내 천연가스배관 유지관리를 위한 목표신뢰도 적용사례 (Application of Target Reliability Levels for Maintenance of Domestic Natural Gas Pipelines)

  • 이진한;김정환;조영도;김래현
    • 한국가스학회지
    • /
    • 제22권3호
    • /
    • pp.1-6
    • /
    • 2018
  • 신뢰도기반 설계 및 평가(RBDA) 방법론은 천연가스 배관을 설계하는 최신의 방법 중 하나이다. 신뢰도 목표는 설계와 유지관리 단계에 걸쳐 관계된 한계상태을 충족하는 안전수준을 가지는 지 확인하기 위해 사용된다. 목표 신뢰도는 대누출과 파단과 같은 극한한계상태에 대한 개인적 위험과 사회적 위험에서 사용하는 허용 가능한 위험수준을 적용하여 개발되었다. 본 논문에서 신뢰도 목표는 배관의 생애주기 동안 주기적인 유지관리를 적용함으로써 충족할 수 있음을 보여준다. 사례분석은 국내 천연가스 수송배관에 대한 굴착공사에 따른 손상확률 계산, 부식에 따른 손상확률의 계산, 그리고 재검사 주기의 추정을 포함한다.

주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동 (Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron)

  • 한광식;강용주;강문석;강성민;김진수;손광석;김동규
    • 한국주조공학회지
    • /
    • 제31권2호
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

Al 5052 합금의 저입열 Pulse MIG 최적 현장 용접조건 산정에 관한 실험적 연구 (Study on the Optimization Field Welding Conditions of Low Heat-Input Pluse MIG Welding Process for 5052 Aluminum Alloy Sheets)

  • 김재성;이영기;안주선;이보영
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.80-84
    • /
    • 2011
  • The weight reduction of the transportations has become an important technical subject Al and Al alloys, especially Al 5052 alloys have been being applied as door materials for automobile. One of the most widely known car weight-reduction methods is to use light and corrosion-resistant aluminum alloys. However, because of high electrical and thermal conductivity and a low melting point, it is difficult to obtain good weld quality when working with the aluminum alloys. Also, Pulse MIG welding is the typical aluminum welding process, but it is difficult to apply to the thin plate, because of melt-through and humping-bead. In order to enhance weld quality, welding parameters should be considered in optimizing the welding process. In this experiment, Al 5052 sheets were used as specimens, and these materials were welded by adopting new Cold Metal Transfer (CMT) pulse process. The proper welding conditions such as welding current, welding speed, torch angle $50^{\circ}$ and gap 0~1mm are determined by tensile test and bead shape. Through this study, range of welding current are confirmed from 100A to 120A. And, the range of welding speed is confirmed from 1.2m/min to 1.5m/min.

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(IV) - 겹치기 용접 및 실물 열교환기로의 적용 - (A Study of Weldability for Pure Titanium by Nd:YAG Laser(IV) - Lap Welding and Application for Heat Exchanger -)

  • 김종도;곽명섭;이창제;길병래
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.66-71
    • /
    • 2010
  • With large specific strength and outstanding corrosion resistance and erosion resistance in sea water, titanium and titanium alloy are widely used in heat exchanger production. In particular, pure titanium demonstrates outstanding molding performance and may be considered optimal for production of heat exchanger. Since titanium is very vulnerable to oxidation and embrittlement during welding, processes with less heat input are widely used, and laser welding is widely applied by considering production performance and shield etc in atmosphere. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through oxygen and nitrogen quantitative analysis and hardness measurement, and evaluated welding performance and mechanical properties of butt welding. This study evaluated field applicability of lap welding to heat exchange plate of LPG re-liquefaction device for ships through tensile stress test, hardness test and internal pressure test etc after deducing optimal weding condition and applying to actual heat exchange plate. In bead overlap area, the experiment produced sound welds with no porosity or defect by increasing and decreasing laser power, and tensile-shear test results indicated virtually the same tension and yield strength as base metal. As a result of measuring hardness at lateral cross section and bead overlap zone of actual heat exchanger welds, hardness difference within 20Hv was produced at base metal, HAZ and weldment, and as a result of pneumatic and hydraulic pressure test, no leakage occurred.

자동차용 PCV밸브내 유통특성에 의한 밸브응력 및 변형에 미치는 입출구 차압의 영향 (The Effect of In-Outlet Differential Pressure on a Valve Body Stress and Deformation by the Blow-by Gas Flow Characteristic in the PCV valve for Automobile)

  • 권오헌;이연원;송상민;이종훈;강지웅
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.36-41
    • /
    • 2005
  • PCV(Positive Crankcase Ventilation) valve acts as a flow control valve to get a re-combustion of blow-by gas by having it flow from a crankcase to an inlet manifold suction tube. The blow-by gas of the crankcase should be eliminated or taken properly because it cause corrosion to critical parts, and contributes to increase crankcase pressure that can cause a drop in efficiency. The excessive stress and strain on the PCV valve that remove these harmful gas would be bring the difficult on the flow rate control and failure of the valve. Those condition inevitably induce the accident. Therefore, this study purpose is FEM evaluation of the stresses and deformation in the X3 PCV model according to the change of the differential pressure between inlet and outlet. From results, the maximum equivalent stresses increased linearly according to the increase of the differential pressure at the about 50mm from the inlet position and were under the yield strength of the valve. And the deformations were relatively small regardless of the in-outlet differential pressure variation.

The Electrical Properties of Aluminum Bipolar Plate for PEM Fuel Cell System

  • Oh, Mee-hye;Yoon, Yeo-Seong;Park, Soo-Gil;Kim, Jae-Yong;Kim, Hyun-Hoo;Osaka, Tetsuya
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권5호
    • /
    • pp.204-207
    • /
    • 2004
  • In this work, we present the electrochemical properties of Al bipolar plate, which can be re-searched for the application of PEMFC system. Bulk resistance of the plate was measured with a four-point probe method. The electrical conductivity of noble metal coated Al plate was 4.40 x 10$^4$ S/cm. On the other hand, the electrical interfacial resistance of the noble metal coated Al plate valued at 0.15 mΩ-$\textrm{cm}^2$ and that of graphite was 0.26 mΩ-$\textrm{cm}^2$ under the holding pressure of 140 N/$\textrm{cm}^2$ at the applied current of 5 A. And the performance of Al bipolar plate for PEMFC was evaluated at various conditions. The single cell performance was more than 0.43 W/$\textrm{cm}^2$ (0.47 Wig) for noble metal coated Al bipolar plate at 5$0^{\circ}C$ under atmospheric pressure in external humidified hydrogen and oxygen condition. As the present results, we could show the results that the noble metal coated Al bipolar plates were favorable in the aspect of electrical properties compared with those of the commercialized resin-impregnated graphite plates.

A study on the changes in attractive force of magnetic attachments for overdenture

  • Leem, Han-Wool;Cho, In-Ho;Lee, Jong-Hyuk;Choi, Yu-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권1호
    • /
    • pp.9-15
    • /
    • 2016
  • PURPOSE. Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. MATERIALS AND METHODS. Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. RESULTS. Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. CONCLUSION. Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed.

석조 문화재 보존 처리용 세정제 개발에 관한 기초연구 (A Basic Research for the Development of Cleaning Agent for Stone Made Cultural Property)

  • 조헌영
    • 보존과학회지
    • /
    • 제11권1호
    • /
    • pp.28-37
    • /
    • 2002
  • 문화재 보존을 위한 처리 과정에는 반드시 세척이 행하여지며, 이 때 세척은 완벽한 세정뿐만 아니라 2차 오염 발생이나 훼손 등에 각별히 조심하여야 한다. 따라서 본 연구에서는 보다 과학적인 방법으로 석조문화재 보존 처리용 세정제를 개발하기 위하여, 국내 석조물에 기생하는 미생물과 오물을 시료로 채취하여 FT-IR분석을 통하여 석재 오물의 화학적인 관능기를 파악하고, 각종 용매를 처리하여 그 용출 특성을 파악하였으며, 세정제에 의한 세정 효과와 풍화율에 대하여 연구하였다. 실험 결과로부터 석재 문화재 세정용 계면활성제로는 산성용액에서도 안정하며, 석재 구성물질과의 반응성이 적고, 각종 2차 오염 발생 가능성이 적으며, 산화제와 산의 활성을 증가시킬 수 있는 비이온 계면활성제가 적당한 것으로 판단되었다. 본 연구에서 개발한 $H_2O_2/HF/NP-10$ 복합형 세정제는 적용실험 결과, 석조 문화재 처리용 세정제로서 좋은 세정력을 가지고있는 것으로 판단된다.

  • PDF

방전플라즈마 소결 공정 적용 전이금속 카바이드 서멧의 소결 및 기계적 특성 (Sintering Behavior and Mechanical Property of Transition Metal Carbide-Based Cermets by Spark Plasma Sintering)

  • 이정한;박현국;홍성길
    • 한국재료학회지
    • /
    • 제32권1호
    • /
    • pp.44-50
    • /
    • 2022
  • Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 ℃ (60 ℃min) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.