• Title/Summary/Keyword: Re-Engineering

Search Result 3,536, Processing Time 0.031 seconds

Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory (PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작)

  • Baek, Il-Jin;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.

Optimal Process Design of Onboard BOG Re-liquefaction System for LNG Carrier (LNG 운반선을 위한 BOG 재액화시스템 최적 설계)

  • Hwang, Chulmin;Lim, Youngsub
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.372-379
    • /
    • 2018
  • High-pressure gas injection engines (HPGI) took center stage in LNG carrier propulsion systems after their advent. The HPGI engine system can be easily modified to include a re-liquefaction system by adding several devices, which can significantly increase the economic feasibility of the total system. This paper suggests the optimal operating conditions and capacity for a re-liquefaction system for an LNG carrier, which can minimize increases in the total annualized cost. The installation of a re-liquefaction system can save 0.23 million USD per year when the cost of LNG is 5 USD/Mscf. A sensitivity analysis with different LNG costs showed that the re-liquefaction system is profitable when the LNG cost is higher than 3.5 USD/Mscf.

The Onset of Tayler-Görtler Vortices in Impulsively Decelerating Circular Flow

  • Cho, Eun Su;Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.609-613
    • /
    • 2015
  • The onset of instability induced by impulsive spin-down of the rigid-body flow placed in the gap between two coaxial cylinders is analyzed by using the energy method. In the present stability analysis the growth rate of the kinetic energy of the base state and also that of disturbances are taken into consideration. In the present system the primary flow is a transient, laminar one. But for the Reynolds number equal or larger than a certain one, i.e. $Re{\geq}Re_G$ secondary motion sets in, starting at a certain time. For $Re{\geq}Re_G$ the dimensionless critical time to mark the onset of vortex instabilities, ${\tau}_c$, is here presented as a function of the Reynolds number Re and the radius ratio ${\eta}$. For the wide gap case of small ${\eta}$, the transient instability is possible in the range of $Re_G{\leq}Re{\leq}Re_S$. It is found that the predicted ${\tau}_c$-value is much smaller than experimental detection time of first observable secondary motion. It seems evident that small disturbances initiated at ${\tau}_c$ require some growth period until they are detected experimentally.

Reynolds number effects on twin box girder long span bridge aerodynamics

  • Kargarmoakhar, Ramtin;Chowdhury, Arindam G.;Irwin, Peter A.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.327-347
    • /
    • 2015
  • This paper investigates the effects of Reynolds number (Re) on the aerodynamic characteristics of a twin-deck bridge. A 1:36 scale sectional model of a twin girder bridge was tested using the Wall of Wind (WOW) open jet wind tunnel facility at Florida International University (FIU). Static tests were performed on the model, instrumented with pressure taps and load cells, at high wind speeds with Re ranging from $1.3{\times}10^6$ to $6.1{\times}10^6$ based on the section width. Results show that the section was almost insensitive to Re when pitched to negative angles of attack. However, mean and fluctuating pressure distributions changed noticeably for zero and positive wind angles of attack while testing at different Re regimes. The pressure results suggested that with the Re increase, a larger separation bubble formed on the bottom surface of the upstream girder accompanied with a narrower wake region. As a result, drag coefficient decreased mildly and negative lift coefficient increased. Flow modification due to the Re increase also helped in distributing forces more equally between the two girders. The bare deck section was found to be prone to vortex shedding with limited dependence on the Re. Based on the observations, vortex mitigation devices attached to the bottom surface were effective in inhibiting vortex shedding, particularly at lower Re regime.

Systematic influence of wind incident directions on wind circulation in the re-entrant corners of high-rise buildings

  • Qureshi, M. Zahid Iqbal;Chan, A.L.S.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.409-428
    • /
    • 2016
  • The mechanical and aerodynamic effect of building shape plays a dominate role in the pedestrian level wind environment. These effects have been presented in numerous studies and are available in many wind codes. However, most studies have focused on wind flow around conventional buildings and are limited to few wind directions. The present study investigated wind circulation in the re-entrant corners of cross-shaped high-rise buildings from various wind directions. The investigation focused on the pedestrian level wind environment in the re-entrant corners with different aspect ratios of building arrangements. Ninety cases of case study arrangements were evaluated using wind tunnel experimentation. The results show that for adequate wind circulation in the re-entrant corners, building orientations and separations play a critical role. Furthermore, in normal wind incident directions and at a high aspect ratio, poor wind flow was observed in the re-entrant corners. Moreover, it was noted that an optimized building orientation and aspect ratio significantly improved the wind flow in re-entrant corners and through passages. In addition, it was observed that oblique wind incident direction increased wind circulation in the re-entrant corners and through passages.

A Study on the Characteristics of Heating Performance of High-Performance Heat Pump with VI cycle using Re-Heater (재열기를 사용한 고성능 VI 사이클 열펌프의 난방 성능 특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.69-75
    • /
    • 2015
  • In this study, the characteristics of heating performance of a high-performance air-cooled heat pump with vapor-injection(VI) cycle using re-heater was investigated experimentally. Devices used in the experiment is consist of a VI compressor, condenser, oil separator, refrigerant (economizer outlet refrigerant) re-heater, economizer, evaporator. And R410A was used as a working fluid. The experiment was conducted with two cycles(cycles A and B) for investigating heating performance. In case of cycle B, heat exchange was conducted by re-heater between outlet refrigerant of compressor and suction refrigerant of the VI system(Fig.1, re-heater). But the re-heater was not used in case of cycle A. As a result of this experiment, discharge temperature of refrigerator in compressor was shown higher value, when the cycle B was conducted, because of the heat exchange between suction refrigerant of VI cycle and outlet refrigerant of compressor in the re-heater than cycle A that was not use re-heater. it means that liquid hammer and the decrement of heating performance can be decreased by using re-heater. Also, Heating coefficient of performance(COPh) was shown about 2.98 in Cycle B which was 4% higher than Cycle A and from these results, It was confirmed that the improvement of the heating performance of heat pump with VI cycle can be achieved by applying re-heater.

Improved Uniformity in Resistive Switching Characteristics of GeSe Thin Film by Ag Nanocrystals

  • Park, Ye-Na;Shin, Tae-Jun;Lee, Hyun-Jin;Lee, Ji-Soo;Jeong, Yong-Ki;Ahn, So-Hyun;Lee, On-You;Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.2-237.2
    • /
    • 2013
  • ReRAM cell, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of conductive filament in a solid electrolyte [1,2]. Especially, Chalcogenide-based ReRAM have become a promising candidate due to the simple structure, high density and low power operation than other types of ReRAM but the uniformity of switching parameter is undesirable. It is because diffusion of ions from anode to cathode in solid electrolyte layer is random [3]. That is to say, the formation of conductive filament is not go through the same paths in each switching cycle which is one of the major obstacles for performance improvement of ReRAM devices. Therefore, to control of nonuniform conductive filament formation is a key point to achieve a high performance ReRAM. In this paper, we demonstrated the enhanced repeatable bipolar resistive switching memory characteristics by spreading the Ag nanocrystals (Ag NCs) on amorphous GeSe layer compared to the conventional Ag/GeSe/Pt structure without Ag NCs. The Ag NCs and Ag top electrode act as a metal supply source of our devices. Excellent resistive switching memory characteristics were obtained and improvement of voltage distribution was achieved from the Al/Ag NCs/GeSe/Pt structure. At the same time, a stable DC endurance (>100 cycles) and an excellent data retention (>104 sec) properties was found from the Al/Ag NCs/GeSe/ Pt structured ReRAMs.

  • PDF

A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Lee, Deok-Jin;Kim, Siwoo;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.289-302
    • /
    • 2017
  • The key risk analysis technologies for the re-entry of space objects into Earth's atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on reentry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d'Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth's atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

State-Aware Re-configuration Model for Multi-Radio Wireless Mesh Networks

  • Zakaria, Omar M.;Hashim, Aisha-Hassan Abdalla;Hassan, Wan Haslina;Khalifa, Othman Omran;Azram, Mohammad;Goudarzi, Shidrokh;Jivanadham, Lalitha Bhavani;Zareei, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.146-170
    • /
    • 2017
  • Joint channel assignment and routing is a well-known problem in multi-radio wireless mesh networks for which optimal configurations is required to optimize the overall throughput and fairness. However, other objectives need to be considered in order to provide a high quality service to network users when it deployed with high traffic dynamic. In this paper, we propose a re-configuration optimization model that optimizes the network throughput in addition to reducing the disruption to the mesh clients' traffic due to the re-configuration process. In this multi-objective optimization model, four objective functions are proposed to be minimized namely maximum link-channel utilization, network average contention, channel re-assignment cost, and re-routing cost. The latter two objectives focus on reducing the re-configuration overhead. This is to reduce the amount of disrupted traffic due to the channel switching and path re-routing resulted from applying the new configuration. In order to adapt to traffic dynamics in the network which might be caused by many factors i.e. users' mobility, a centralized heuristic re-configuration algorithm called State-Aware Joint Routing and Channel Assignment (SA-JRCA) is proposed in this research based on our re-configuration model. The proposed algorithm re-assigns channels to radios and re-configures flows' routes with aim of achieving a tradeoff between maximizing the network throughput and minimizing the re-configuration overhead. The ns-2 simulator is used as simulation tool and various metrics are evaluated. These metrics include channel-link utilization, channel re-assignment cost, re-routing cost, throughput, and delay. Simulation results show the good performance of SA-JRCA in term of packet delivery ratio, aggregated throughput and re-configuration overhead. It also shows higher stability to the traffic variation in comparison with other compared algorithms which suffer from performance degradation when high traffic dynamics is applied.

Impedance Analysis of Resistance Anomaly of $BaTiO_3$ based PTC thermistor

  • Chun, Myoung-Pyo;Myoung, Seong-Jae;Nam, Joong-Hee;Cho, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.182-182
    • /
    • 2009
  • The effect of Re-oxidation on the PTCR properties of Sm-doped barium titanate ceramics was investigated by means of impedance spectroscopy. Electrical properties such as resistance vs. temperature, I-V curve were measured and microstructure was observed with SEM photography. Sample was fabricated with thick film process such as tape casting of green sheet, screen printing of electrode pattern, stacking, firing in reduced atmosphere and re-oxidation, etc. As the temperature of re-oxidation increases, resistance jump as a function of temperature enhances but resistance at room temperature increases. These behavior of resistance as a function of temperature, dependent on the re-oxidation condition, is analyzed with Cole-Cole impedance plot and is shown to be related with the degree of oxidation of grain boundary regardless of grain core during re-oxidation process of sample.

  • PDF