• Title/Summary/Keyword: RdRc

Search Result 219, Processing Time 0.025 seconds

Effects of Panax ginseng on Type I Hypersensitivity (제1형 과민 반응에 미치는 고려인삼의 영향)

  • Kim, Young-Ran;Lee, Eun;Lee, Shee-Yong;Kim, Kyeong-Man
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • Effects of Panax ginseng on allergic reactions were studied uslng various in vivo and in vitro experimental models such as 48-hr passive cutaneous anaphylaxis, mediators-induced skin reactions, histamine release from rat peritoneal mast cells, hexosaminidase release from RBL-2H3 cells, and lipoxygenase assay . In all of anti-allergic experiments we conducted, ginseng components (50% ethanol extract or ginseng total saponin or ginsenosides) extracted from Korean red ginseng, did not show significant anti-allergic actions. In 48-hr passive cutaneous anaphylaxis and mediators-induced skin reactions, 50% ethanol extract did not suppress hypersensitivity reactions. Total saponin, 50% ethanol extract, and 8 major ginsenosides did not show inhibitory effects on lipoxygeanse activity. Ginseng total saponin did not inhibit histamine release from rat peritoneal mast cells. All of the ginseng components mentioned above were also tested on RBL-2H3 cells, but none of them inhibited hexosaminidase release from this cell line. These results suggest that Panax ginseng does not have effects on allergic reactions at the level of 50% ethanol extract or total saponin used. All of 8 major saponin components tested ($Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$, $Rg_2$), did not inhibit lipoxygenase activity and degranulation events.

  • PDF

Simultaneous Quantification of 13 Ginsenosides by LC-MS/MS and its Application in Diverse Ginseng Extracts

  • Jo, Jung Jae;Cho, Pil Joung;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.41-45
    • /
    • 2018
  • Ginseng (Panax ginseng Meyer) has been used as traditional herbal drug in Asian countries. Ginsenosides are major components having pharmacological and biological efficacy like anti-inflammatory, anti-diabetic and anti-tumor effects. To control the quality of the components in diverse ginseng products, we developed a new quantitative method using LC-MS/MS for 13 ginsenosides; Rb1, Rb2, Rc, Rd, Re, Rf, 20(S)-Rh1, 20(S)-Rh2, Rg1, 20(S)-Rg3, F1, F2, and compound K. This method was successfully validated for linearity, precision, and accuracy. This quantification method applied in four representative ginseng products; fresh ginseng powder, white ginseng powder, red ginseng extract powder, and red ginseng extract. Here the amounts of the 13 ginsenosides in the various type of ginseng samples could be analyzed simultaneously and expected to be suitable for quality control of ginseng products.

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II) (사람의 장내세균에 의한 인삼 사포닌의 대사(제2보))

  • Hasegawa, Hideo;Ha, Joo-Young;Park, Se-Ho;Matumiya, Satoshi;Uchiyama, Masamori;Huh, Jae-Doo;Sung, Jong-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF

Change of Neutral Ginsenoside Contents in Red and Fresh Ginseng (Panax ginseng C. A. Meyer) by Hydrolysis (가수분해 처리에 의한 홍삼과 인삼의 중성 Ginsenoside 함량 변화)

  • Han, Jin Soo;Lee, Gang Seon;Tak, Hyun Seong;Kim, Jung-Sun;Ra, Jeong Woo;Choi, Jae Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2014
  • This study was carried out to investigate change of ginsenoside contents in red and fresh ginseng according to root part and age by hydrolysis. Neutral total ginsenoside contents by hydrolysis in 6-year main root and lateral root were significantly increased than those by non-hydrolysis, as 41.6 and 32.8%, respectively. However, there was no significant difference in red ginseng. In fresh ginseng, ginsenoside contents of the protopanaxatriol group such as Re, Rf, $Rg_1$, $Rg_2$, and $Rh_1$ were not significantly different, but $Rb_1$, $Rb_2$, $Rb_3$, Rc, and Rd showed significant difference. The increase rate of neutral total ginsenoside content by hydrolysis was higher in epidermis-cortex than stele. Also, the neutral total ginsenoside content was fine root > rhizome > lateral root > main root, respectively. While there was no tendency towards the increase of ginsenoside by hydrolysis with the increase of root age in fine root and rhizome, there was significant decrease in main root and lateral root.

Antioxidant and Antimicrobial Activities of Various Solvent Fractions of Fine Ginseng Root

  • Lim, Jae-Kag;Kang, Ho-Jin;Kang, Suk-Nam;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.513-518
    • /
    • 2009
  • This study was carried out to investigate the changes of yield, total phenolics, saponin content and composition, antimicrobial, and antioxidant activities of various fractions of fine ginseng root (Panax ginseng C.A. Mayer) by maceration method in the order of increasing polarity (hexane, chloroform, ethyl acetate, butanol, and water). Butanol fraction showed the highest total saponin content compare to other fractions. Hexane fraction could harvest significantly high ginsenoside Rg2, Rg1, and Rf (p<0.05). And the contents of ginsenoside Rh1, Rg3, and Rg1 showed relatively higher in the fraction of ethyl acetate than other fractions. The system of hexane-chloroform-ethyl aceate-butanol showed relatively high content of ginsenoside Re, Rd, Rc, Rb3, and Rb1. However, the last fraction of water still remained lots of Rb2 content. The fraction of water was the highest phenolics. The 1,1-diphenyl-2-picryhydrazil, superoxide, and hydroxyl radical scavenging activity of water fraction was higher than the other fractions. In antimicrobial activity, the fraction of hexane showed relatively high antimicrobial activity against Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, Bacillus cereus, and Escherichia coli. And the fractions of the chloroform and ethyl acetate showed higher antimicrobial activities than the other samples in against P. aeruginosa and S. typhimurium.

Development and Verification of New Ginseng Processing Methods (가공방법을 달리한 홍삼의 품질 특성)

  • Ye Eun-Ju;Kim Soo-Jung;Park Chang-Ho;Gwakg Hee-Boo;Beal Man-Jong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.4
    • /
    • pp.413-418
    • /
    • 2005
  • This study was performed to develop new processing methods and products from steamed ginseng with rice wine. The brownnes, turbidity and the total ginsenoside in ginseng were examined All the values of examined premonitory materials, intermediate products, coloring matters and turbidity were increased as the steaming continued The quantity of total ginsenoside was increased when the steaming with rice wine continued in A1 - A9($1^{st}$ traditional rice wine steamed red ginseng: $A1{\~}9^{th}$ traditional rice wine steamed-red ginseng:A9). The quantity of ginsenoside-Rc, ginsenoside-Rd, ginsenoside-Re in Al were increased as the steaming continued. The quantity of ginsenoside-$Rg_2$ and ginsenoside-$Rg_3$ was increased when the number of steaming increased.

  • PDF

The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng

  • Gui, Ying;Ryu, Gi Hyung
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.219-226
    • /
    • 2013
  • This study was conducted to investigate the effect of extrusion conditions (moisture content 20% and 30%, screw speed 200 and 250 rpm, barrel temperature $115^{\circ}C$ and $130^{\circ}C$) on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng (KRG). Extruded KRGs showed relatively higher amounts of acidic polysaccharide (6.80% to 9.34%) than non-extruded KRG (4.34%). Increased barrel temperature and screw speed significantly increased the content of acidic polysaccharide. The major ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg2s, Rg3s, Rh1, and Rg3r) of KRG increased through extrusion, while the ginsenoside (Rg1) decreased. The EX8 (moisture 30%, screw speed 250 rpm, and temperature $130^{\circ}C$) had more total phenolics and had a better scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals than those of extruded KRG samples. The extrusion cooking showed a significant increase (6.8% to 20.9%) in reducing power. Increased barrel temperature significantly increased the values of reducing power, the highest value was 1.152 obtained from EX4 (feed moisture 20%, screw speed 250 rpm, and temperature $130^{\circ}C$). These results suggest that extrusion conditions can be optimized to retain the health promoting compounds in KRG products.

Emerging Technology - Research on Ginsenoside Characteristics of Gyeonggi Ginseng (신기술 신소재 - 경기인삼 진세노사이드 특성 연구)

  • Hong, Hee-Do;Eom, Mi-Na
    • Bulletin of Food Technology
    • /
    • v.25 no.3
    • /
    • pp.258-266
    • /
    • 2012
  • 경기인삼 품질 특성을 확립하기 위한 기초자료로 진세노사이드 특성을 조사하였다. 경기도내 4대 인삼조합(개성, 김포 파주, 경기동부, 안성) 인삼을 인삼농가에서 직접 채취하거나 채굴현장에서 수집하여 진세노사이드 함량 및 조성을 분석하여 그 특성을 분석해 본 결과는 다음과 같다. 1. 경기인삼 4, 5, 6년근의 총 진세노사이드 함량은 3.92 mg/g, 4.34 mg/g 및 4.94 mg/g으로 각각 나타나 재배 년수가 증가할수록 함량이 높아짐을 알 수 있었다. PD/PT 비율은 1.12, 1.34 및 1.40으로 년근 수가 증가할수록 PD계열 진세노사이드 함량이 증가하였다. 2. 경기인삼 6년근의 크기별 진세노사이드 함량을 측정한 결과 큰 인삼(大)의 총 진세노사이드 함량은 5.19 mg/g, 작은 인삼은 4.69 mg/g으로 같은 년근 수에서는 인삼의 크기에 따라 진세노사이드함량 차이는 크게 나타나지 않았다. 3. 6년근 부위별 총 진세노사이드 함량은 주근이 3.70 mg/g이며 세근은 6.37 mg/g으로써 주근보다 세근에서 1.72배 함량이 높은 것으로 나타났다. 진세노사이드 각각 함량별로 비교해 볼 때 PD계인 진세노사이드 $Rb_2$, $Rb_3$, Rc, Rd와 PT계인 Re, $Rg_2$가 주근보다 세근에서 높은 함량을 나타내어, PD/PT 비율이 1.08과 2.06으로 세근은 주근보다 PD계열 함량이 2배 이상 높은 것으로 나타났다.

  • PDF

HPLC SEPARATION AND QUANTITATIVE DETERMINATION OF GINSENOSIDES FROM PANAX GINSENG, PANAX QUINQUEFOLIUM AND FROM GINSENG DRUG PREPARATIONS

  • Soldati F
    • Proceedings of the Ginseng society Conference
    • /
    • 1980.09a
    • /
    • pp.59-69
    • /
    • 1980
  • A new HPLC-method for separation and quantitative determination of ginsenosides in Panax ginseng, Panax quinquefolium and in pharmaceutical drug preparations is elaborated. A reversed-phase-system with ${\mu}Bondapak\;C_{18}$ column (3.9 mm $I.D.{\times}30\;cm$) using acetonitrile-water (30:70) 2 ml/min and acetonitrile-water (18:82) 4 ml/min is suitable for the base-line separation of $Rb_1,\;Rb_2,\;Rc,\;Rd,\;Rf,\;Rg_2,\;respectively\;Re,\;Rg_1$ in 30 minutes. The ginsenosides are directly detected at 203 nm (without derivatization) with the LC-55 or LC-75 spectrophotometer (Perkin-Elmer) at $100\%$ transmission. Detection limit is 300 ng at a signal-to-noise ratio of 10:1. The ginsenosides-peak identification is carried out with HPTLC (high performance thin layer chromatography), with MIR-IR (multiple internal reflection-IR-spectros-copy) and with FD-MS (field desorption mass spectrometry). The calibration curve of each ginsenoside has a correlation coefficient very near to 1. Relative standard deviation for quantitative determinations depends upon the amount of ginsenosides and is approximately 1\%$ for ginsenoside contents of 1\%$. This method is adaptable for routine analysis in quality control laboratories.

  • PDF

Variations in Ginsenosides of Raw Ginseng According to Heating Temperature and Time

  • Kim, Chan Joong;Kim, Bo Mi;Kim, Cheon Suk;Baek, Jung Yeon;Jung, In Chan
    • Journal of Pharmacopuncture
    • /
    • v.23 no.2
    • /
    • pp.79-87
    • /
    • 2020
  • Objectives: Ginsenosides found in ginseng, and the hydrolysates derived from their conversion, exhibit diverse pharmacological characteristics [1]. These have been shown to include anti-cancer, anti-angiogenic, and anti-metastatic effects, as well as being able to provide hepatic and neuroprotective effects, immunomodulation, vasodilation, promotion of insulin secretion, and antioxidant activity. Therefore, the purpose of this study was to examine how quickly the ginsenosides decompose and what kinds of degradation products are created under physicochemical processing conditions that don't involve toxic chemicals or other treatments that may be harmful. Methods: The formation of ginsenoside-Rg2 and ginsenoside-Rg3 was examined. These demonstrated diverse pharmacological effects. Results: We also investigated physicochemical factors affecting their conversion. The heating temperatures and times yielding the highest concentration of ginsenosides (-Rb1, -Rb2, -Rc, -Rd, -Rf, -Rg1, and -Re) were examined. Additionally, the heating temperatures and rates of conversion of these ginsenosides into new 'ginseng saponins', were examined. Conclusion: In conclusion, obtained provide us with effective technology to control the concentration of both ginsenosides and the downstream converted saponins (ginsenoside-Rg2, Rg3, Rg5, and Rk1 etc.), as well as identifying the processing conditions which enable an enrichment in concentration of these compounds.