• Title/Summary/Keyword: Rayleigh-faded Channels

Search Result 3, Processing Time 0.019 seconds

Performance Bounds of an Amplify-and-Forward Relay System with Multiple Rayleigh-faded Co-channel Interferers (레일리 페이딩을 겪는 다중 간섭 채널 환경에서 증폭-후-전달 릴레이 시스템의 성능 한계)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.87-96
    • /
    • 2012
  • In this paper, we consider a 2-hop relay system where both the relay and destination nodes suffer from the arbitrary number of co-channel interferers. More specifically, assuming that the relay and access channels as well as interference channels are all subject to Rayleigh fading, we derive an exact closed-form expression for outage probability of the amplify-and-forward (AF) relay system, and furthermore compute its upper and lower bounds. Based on these bounds, we derive the upper and lower bounds on the average bit error rate (BER) of the AF relay system. We also confirm the accuracy of our derivation by investigating the performance gap between the performance bounds under consideration and simulation results.

Globally Optimal Solutions for Cross-Layer Design in Fast-Fading Lossy Delay-Constrained MANETs

  • Pham, Quoc-Viet;Kim, Hoon;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.168-177
    • /
    • 2015
  • To increase the overall utility and decrease the link delay and power consumption, a joint optimal cross-layer design of congestion control at the transport layer, link delay at the data link layer and power allocation at the physical layer for mobile ad hoc networks is considered in this paper. As opposed to previous work, the rate outage probability in this work is based on exactly closed-form; therefore, the proposed method can guarantee the globally optimal solutions to the underlying problem. The non-convex formulated problem is transformed into a convex one, which is solved by exploiting the duality technique. Finally, simulation results verify that our proposal achieves considerable benefits over the existing method.

A Framework of Rate Control and Power Allocation in Multipath Lossy Wireless Networks

  • Radwan, Amr;Kim, Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1404-1414
    • /
    • 2016
  • Cross-layer design is a concept, which captures the dependencies and interactions and enables information sharing among layers in order to improve the network performance and security. There are two key challenges in wireless networks, lossy features of links and power assumption of network nodes. Cross-layer design of congestion control and power allocation in wireless lossy networks has been studied in the existing literature; however, there has been no contribution proposed in the literature that exploits the path diversity. In this paper, we are motivated to develop a cross-layer design of congestion control and power allocation, which takes into account lossy features of wireless links and transmission powers of network nodes and can be implemented in a distributed manner. Numerical simulation is conducted to illustrate the performance of our proposed algorithm and the comparison with current alternative approaches.