• 제목/요약/키워드: Rayleigh fading channels

Search Result 291, Processing Time 0.023 seconds

Threshold detection technique for code acquisition using maximum mismatched correlation value (부정합된 최대 상관값을 이용한 초기 동기 임계치 결정 기법)

  • 유영환;김종헌;강성철;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1803-1813
    • /
    • 1996
  • This paper describes an automatic threshold decision using a maximum mismatched correlation value in the direct sequence spread spectrum (DS-SS) system. For received PN codes with different single-to-noise ratio (SNR), this scheme is able to detect a desired threshold value in the search mode, i.e. a maximum mismstched correlation value, so that value is utilized as a threshold for the verification mode. Performance of the proposed scheme in both the additive white gaussian noise (AWGN) and frequency-selective Rayleigh fading channels is analyzed through the Monte Carlo simulation. And hardware implementation of this scheme using a DSP processor is demonstrated. The proposed acquisition shceme is compared to the conventional constant threshold (CT) scheme, and significant improvement of performance is shown. Analysis of system performance in the verification mode is presented, and key quantities such as the false alarm probability and the detection probability are derived in a AWGN channel.

  • PDF

Partial Relay Selection for Decode and Forward over Rayleigh Fading Channels (레일리페이딩 환경에서 복호 후 재전송방식을 위한 부분적 릴레이 선택방식 연구)

  • Bao, Vo Nguyen Quoc;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.523-529
    • /
    • 2009
  • This paper provides closed form expressions for the evaluation of the end-to-end outage probability, symbol error rate, bit error rate and average capacity of the partial-based Decode-and-Forward (DF) relay selection scheme with an arbitrary number of relays. In a comparison with the performance of systems that exploit Amplify-and-Forward (AF), it can be seen that the performance of our proposed protocol converges to that of partial-based AF relay selection in high SNR regime. We also perform Monte-Carlo simulations to validate the analysis.

Dual-Hop Amplify-and-Forward Multi-Relay Maximum Ratio Transmission

  • Erdogan, Eylem;Gucluoglu, Tansal
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, the performance of dual-hop multi-relay maximum ratio transmission (MRT) over Rayleigh flat fading channels is studied with both conventional (all relays participate the transmission) and opportunistic (best relay is selected to maximize the received signal-to-noise ratio (SNR)) relaying. Performance analysis starts with the derivation of the probability density function, cumulative distribution function and moment generating function of the SNR. Then, both approximate and asymptotic expressions of symbol error rate (SER) and outage probability are derived for arbitrary numbers of antennas and relays. With the help of asymptotic SER and outage probability, diversity and array gains are obtained. In addition, impact of imperfect channel estimations is investigated and optimum power allocation factors for source and relay are calculated. Our analytical findings are validated by numerical examples which indicate that multi-relay MRT can be a low complexity and reliable option in cooperative networks.

Theory and Design of Near-Optimal MIMO OFDM Transmission System for Correlated Multipath Rayleigh Fading Channels

  • Hung, Kun-Chien;Lin, David W.
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.150-158
    • /
    • 2007
  • We consider channel-coded multi-input multi-output (MIMO) orthogonal frequency-division multiplexing (OFDM) transmission and obtain a condition on its signal for it to attain the maximum diversity and coding gain. As this condition may not be realizable, we propose a suboptimal design that employs an orthogonal transform and a space-frequency interleaver between the channel coder and the multi-antenna OFDM transmitter. We propose a corresponding receiving method based on block turbo equalization. Attention is paid to some detailed design of the transmitter and the receiver to curtail the computational complexity and yet deliver good performance. Simulation results demonstrate that the proposed transmission technique can outperform the conventional coded MIMO OFDM and the MIMO block single-carrier transmission with cyclic prefixing.

Block Coding Techniques with Cyclic Delay Diversity for OFDM Systems

  • Du, Ting;Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.867-873
    • /
    • 2008
  • Cyclic delay diversity (CDD) is considered as a simple approach to exploit the frequency diversity in OFDM system. In this paper, we apply CDD to the conventional STBC/SFBC/STFBC-OFDM transmit diversity schemes for Rayleigh fading channels. We compare the performances of STBC/SFBC/STFBC with and without CDD schemes. Simulation results show that the combination of block coding with CDD works well when using the ITU-R M. 1225 channel for both Pedestrian A (Ped A) channel with the mobility of 3 km/h, and Vehicular A (Veh A) channel with the mobility of 120km/h. For a BER of $10^{-3}$, compared to the conventional block coding schemes, a gain of 2dB, 4dB, and 5dB is obtained under the Ped A channel environment by STBC-OFDM, SFBC-OFDM and STFBC-OFDM with CDD, respectively Under the Veh A channel. gains by the combined schemes are 6dB, 2dB, and 4dB, respectivcly.

A Q-learning based channel access scheme for cognitive radios (무선 인지 시스템을 위한 Q-learning 기반 채널접근기법)

  • Lee, Young-Doo;Koo, In-Soo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.77-88
    • /
    • 2011
  • In distributed cognitive radio networks, cognitive radio devices which perform the channel sensing individually, are seriously affected by radio channel environments such as noise, shadowing and fading such that they can not property satisfy the maximum allowable interference level to the primary user. In the paper, we propose a Q-learning based channel access scheme for cognitive radios so as to satisfy the maximum allowable interference level to the primary user as well as to improve the throughput of cognitive radio by opportunistically accessing on the idle channels. In the proposed scheme, the pattern of channel usage of the primary user will be learned through Q-learning during the pre-play learning step, and then the learned channel usage pattern will be utilized for improving the sensing performance during the Q-learning normal operation step. Through the simulation, it is shown that the proposed scheme can provide bettor performance than the conventional energy detector in terms of the interference level to primary user and the throughput of cognitive radio under both AWGN and Rayleigh fading channels.

Self-Encoded Spread Spectrum and Turbo Coding

  • Jang, Won-Mee;Nguyen, Lim;Hempel, Michael
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Self-encoded multiple access (SEMA) is a unique realization of random spread spectrum. As the term implies, the spreading code is obtained from the random digital information source instead of the traditional pseudo noise (PN) code generators. The time-varying random codes can provide additional security in wireless communications. Multi-rate transmissions or multi-level grade of services are also easily implementable in SEMA. In this paper, we analyze the performance of SEMA in additive white Gaussian noise (AWGN) channels and Rayleigh fading channels. Differential encoding eliminates the BER effect of error propagations due to receiver detection errors. The performance of SEMA approaches the random spread spectrum discussed in literature at high signal to noise ratios. For performance improvement, we employ multiuser detection and Turbo coding. We consider a downlink synchronous system such as base station to mobile communication though the analysis can be extended to uplink communications.

Power Allocation for Opportunistic Full-Duplex based Relay Selection in Cooperative Systems

  • Zhong, Bin;Zhang, Dandan;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3908-3920
    • /
    • 2015
  • In this paper, performance analysis of full-duplex (FD) relay selection under decode-and-forward (DF) relaying mode is carried out by taking into account several critical factors, including the distributions of the received signal-to-noise ratio (SNR) and the outage probability of wireless links. The tradeoff between the FD and half-duplex (HD) modes for relay selection techniques is also analyzed, where the former suffers from the impact of residual self-interference, but the latter requires more channel resources than the former (i.e., two orthogonal channels are required). Furthermore, the impact of optimal power allocation (OPA) on the proposed relay-selection scheme is analyzed. Particularly, the exact closed-form expressions for outage probability of the proposed scheme over Rayleigh fading channels are derived, followed by validating the proposed analysis using simulation. Numerical results show that the proposed FD based scheme outperforms the HD based scheme by more than 4 dB in terms of coding gain, provided that the residual self-interference level in the FD mode can be substantially suppressed to the level that is below the noise power.

Performance Evaluation of the Iterative Demapping and Decoding based DVB-T2 BICM module (Iterative Demapping and Decoding 기반 차세대 유럽형 디지털 지상파 방송 시스템(DVB-T2)의 BICM 성능 평가)

  • Jeon, Eun-Sung;Seo, Jeong-Wook;Yang, Jang-Hoon;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.172-178
    • /
    • 2011
  • In this paper, the performance of bit interleaved of coded and modulation(BICM) module of the second generation of digital terrestrial television broadcasting system(DVB-T2) is evaluated with the help of computer simulation. The frame error rate performance is studied in AWGN, Rayleigh fading and 15% erasure channels. In addition, iterative receiver is considered that exchanges extrinsic information between the rotated demapper and the LDPC decoder. Through the simulation it is observed that under the flat fading Rayleigh channel, about 1.2dB gain at FER of $10^{-4}$ is introduced when rotated constellation and iterative demapping and decoding are employed. Under the 15% earasure channel, rotated constellation gives performance gain of about 5dB at BER of $10^{-4}$ and when IDD is applied, additional performance gain of about 3dB can be achieved.

On Practical Issue of Non-Orthogonal Multiple Access for 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.67-72
    • /
    • 2020
  • The fifth generation (5G) mobile communication has an impact on the human life over the whole world, nowadays, through the artificial intelligence (AI) and the internet of things (IoT). The low latency of the 5G new radio (NR) access is implemented by the state-of-the art technologies, such as non-orthogonal multiple access (NOMA). This paper investigates a practical issue that in NOMA, for the practical channel models, such as fading channel environments, the successive interference cancellation (SIC) should be performed on the stronger channel users with low power allocation. Only if the SIC is performed on the user with the stronger channel gain, NOMA performs better than orthogonal multiple access (OMA). Otherwise, NOMA performs worse than OMA. Such the superiority requirement can be easily implemented for the channel being static or slow varying, compared to the block interval time. However, most mobile channels experience fading. And symbol by symbol channel estimations and in turn each symbol time, selections of the SIC-performing user look infeasible in the practical environments. Then practically the block of symbols uses the single channel estimation, which is obtained by the training sequence at the head of the block. In this case, not all the symbol times the SIC is performed on the stronger channel user. Sometimes, we do perform the SIC on the weaker channel user; such cases, NOMA performs worse than OMA. Thus, we can say that by what percent NOMA is better than OMA. This paper calculates analytically the percentage by which NOMA performs better than OMA in the practical mobile communication systems. We show analytically that the percentage for NOMA being better than OMA is only the function of the ratio of the stronger channel gain variance to weaker. In result, not always, but almost time, NOMA could perform better than OMA.