• Title/Summary/Keyword: Raw Materials

Search Result 3,152, Processing Time 0.025 seconds

Management of Critical Control Points to Improve Microbiological Quality of Potentially Hazardous Foods Prepared by Restaurant Operations (외식업체에서 제공하는 잠재적 위험 식품의 미생물적 품질향상을 위한 중점관리점 관리방안)

  • Chun, Hae-Yeon;Choi, Jung-Hwa;Kwak, Tong-Kyung
    • Korean journal of food and cookery science
    • /
    • v.30 no.6
    • /
    • pp.774-784
    • /
    • 2014
  • The purpose of this study was to present management guidelines for critical control points by analyzing microbiological hazardous elements through screening Potentially Hazardous Foods (PHF) menus in an effort improve the microbiological quality of foods prepared by restaurant operations. Steamed spinach with seasoning left at room temperature presents a range of risk temperatures which microorganisms could flourish, and it exceeded all microbiological safety limits in our study. On the other hand, steamed spinach with seasoning stored in a refrigerator had Aerobic Plate Counts of $2.86{\pm}0.5{\log}\;CFU/g$ and all other microbiological tests showed that their levels were below the limit. The standard plate counts of raw materials of lettuce and tomato were $4.66{\pm}0.4{\log}\;CFU/g$ and $3.08{\pm}0.4{\log}\;CFU/g$, respectively. Upon washing, the standard plate counts were $3.12{\pm}0.6{\log}\;CFU/g$ and $2.10{\pm}0.3{\log}\;CFU/g$, respectively, but upon washing after chlorination, those were $2.23{\pm}0.3{\log}\;CFU/g$ and $0.72{\pm}0.7{\log}\;CFU/g$, respectively. The standard plate counts of baby greens, radicchio and leek were $6.02{\pm}0.5{\log}\;CFU/g$, $5.76{\pm}0.1{\log}\;CFU/g$ and $6.83{\pm}0.5{\log}\;CFU/g$, respectively. After 5 minutes of chlorination, the standard plate counts were $4.10{\pm}0.6{\log}\;CFU/g$, $5.14{\pm}0.1{\log}\;CFU/g$ and $5.30{\pm}0.3{\log}\;CFU/g$, respectively. After 10 minutes of chlorination treatment, the standard plate counts were $2.58{\pm}0.3{\log}\;CFU/g$, $4.27{\pm}0.6{\log}\;CFU/g$, and $4.18{\pm}0.5{\log}\;CFU/g$, respectively. The microbial levels decreased as the time of chlorination increased. This study showed that the microbiological quality of foods was improved with the proper practices of time-temperature control, sanitization control, seasoning control, and personal and surface sanitization control. It also presents management guidelines for the control of potentially hazardous foods at the critical control points in the process of restaurant operations.

Situation of Fertilizer Industry in Korea (비료산업(肥料産業)의 현황(現況)과 문제점(問題点))

  • Lee, Yun Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.1
    • /
    • pp.34-48
    • /
    • 1982
  • 1. Production and consumption of chemical fertilizers in Korea could be divided into five different phases of total imports, setting up fertilizer plants, self-sufficiency in production, net export, and diversification in compound fertilizers. Currently the nation has production capacity of 800 thousand M/T of nitrogen, 400 thousand M/T of phosphate ($P_2O_5$) and 200 thousand M/T of potash ($K_2O$). 2. Yearly consumption increased every year, since 1964, 28,000 M/T N, 7,700 M/T $P_2O_5$, and 7,500 M/T $K_2O$ until 1972, when the increase jumped by eight times for $P_2O_5$ and seven times for $K_2O$ for the following 3 years in anticipation of their short supply. Now total consumption has been more or less stabilized at the level of 450 thousand M/T N, 220 thousand M/T $P_2O_5$ and 180 thousand M/T $K_2O$ for the last 7 years. 3. Current operation rate of fertilizer plants is around 80% throughout the whole industry, after going through several different levels depending on demand at times. 4. Fertilizer export started in 1967 and reached a peak of 150 thousand nutrient ton in 1972, about 20% of total production, before temporarily stopping due to over-demand for next three years. The export resumed again in 1976 rise to the all time high of 670 thousand nutrient ton in 1980, almost half of total production, and then started to decline due to higher price of petroleum since then. 5. The decline in fertilizer export appears to be accelerated because several countries, in South-Eastern Asia, traditional export market for Korean fertilizers, started to build their own plants, since 1980, based on their raw materials of especially petroleum. 6. Current consumption in Korea is about 30 nutrient Kg per 10a, equivalent to that in Western European countries, partly due to new high-yielding rice varieties and extensive cultivation of fruit trees and vegetables. Additional fertilizer demand in future can be anticipated in reclaimed land for growing grass and forestry.

  • PDF