• Title/Summary/Keyword: Ratio of ratios

Search Result 6,315, Processing Time 0.04 seconds

Studies on the Foliar Application of Urea as Nitrogen Source of Rice Plant Nutrition (요소엽면살포(尿素葉面撒布)에 따른 수도(水稻)의 질소영양(窒素營養)에 관(關)한 연구(硏究))

  • Cho, Seoung-Jin
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.125-147
    • /
    • 1968
  • This experiment was carried out as a part of the studies on reasonable application of nitrogen in rice plant to determine: (I) Nitrogen absorption. and rooting of rice seedlings as affected by urea foliar application at late seedling stage (II) Effect of leaf prunning and foliar application of urea at late heading stage on the maturation and yield of rice (III) Effect of foliar application of urea and its time during the stage of ear formation on yield of rice plant. Results obtained are summarized as follows. Exp.I: Nitrogen absorption and rooting of rice seedlings as affected be urea foliar application at late seedling stage. 1 : The foliar application of urea plots$(T_{1},T_2)$ snowed mare N-content than non-urea foliar application plot(T0) at lane seedling stage, being significant among treatments and foliar application of urea seemed more effective in increasing the N-content of seedlings. and promoted root settlement and early growth alter the transplanting. 2 : The carbon contents of the plants of $T_1$, and $T_2$ at late seedling stage increased than T0, and the carbon contents. of $T_1$ and $T_2$ plots became higher in amount in proportion to the nitrogen absorption as compared with those of $T_0$. 3 : C/N ratio appeared significant among soil application plots($N_1, \;N_2$) and foliar application of urea plots ($T_1$, $T_2$ and $T_0$). C/N ratio was lower in case of increased amount of nitrogen. The higher contents of nitrogen and carbon and lower C/N ratio resulted in the increment of root numbers and root lengths. Exp.II: Effect of leaf prunning and foliar application of urea at late heading stage on the maturation and yield of rice. 1 : There was a highly significant decrease in the maturing rate by severe leaf prunning. In the mean time, significant increase in maturing rate was observed with urea foliar application and it was found the more frequent application the more effective for higher maturing rate with a moderate significance. A correlationship between the level of prunning and maturing rate was enumerated to 0.961 of correlation coefficient, which indicated an increased maturing rate by the increased number of remaining leaves. 2 : The 1.000 grain weight, grain weight and hulled rice yield increased by leaf prunning in order (plot a$A_1$, $A_3$, $A_2$ and $A_0$ were 89.8%, 89.4%, 87.8% and 87.5% respectively, showing the highest of rate in $A_1$ and $A_3$ in methods of ear fertilization and being highly significant between its treatment. 3 : 1000 grain weights were highly significant between time of application, showing a tendency of increase of weights with the time lagging until days before earings as that of maturing rates. High significance was recognized between methods of ear fertilization, showing the highest in $A_2$ 23.18 gr. 4 : Yields per $3.3m^2$ were not significant between time of ear fertilization, whereas were highly significant between methods of ear fertilization. Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 1.486 kg, 1.491 kg, 1.381 kg and 1.328 kg, respectively, showing the highest in $A_1$ and $A_3$. 5 : Hulling ratios showed significant different between time of ear fertilization, showing the highest in $T_2$, whereas those of methods of ear fertilization were highly significant between its treatment, Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 84.72%, 84.06%, 83.29%, and 82.56% respectively, showing the highest m $A_2$ and $A_3$ among others. 6 : Yields of hulled rice per $3.3m^2$ showed significant different between time of ear fertilization, showing the highest in $T_1$ 1.192 kg. Whereas, those were highly significant between methods of ear fertilization. Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 1.259 kg, 1.254 kg, 1.149 kg and 1.095 kg, respectively, showing the highest in $A_1$ and $A_2$. 7 : Contents of nitrogen on rice plant increased in case of nitrogen application as ear fertilizer and showed that the case of urea foliar application was more effective than that of soil application, showing the increased nitrogen content of rice plant was accompanied by carbon content.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

A Study on Medium-Sized Enterprises of Japan (일본의 중견기업에 관한 연구 : 현황과 특징, 정책을 중심으로)

  • Kang, Cheol Gu;Kim, Hyun Sung;Kim, Hyun Chul
    • Korean small business review
    • /
    • v.32 no.2
    • /
    • pp.209-223
    • /
    • 2010
  • Korea's business is composed of a few large-sized enterprises (which can be abbreviated as LSE) and a majority of small-sized enterprises (SSE). Although there has been a growing recognition of the need for the development of medium-sized enterprises (MSE) which can serve as a link between SSE and LSE, as yet there has not yet been a consensus on the definition, characteristics and the function of the MSE in Korea. Nowadays, the world is being globalized, and Japan and China are in competition to ne a great economic power. While East Asia is experiencing rapid changes, promoting MSE which can secure flexibility and efficiency through covering up the limitation of LSE and SSE is needed in order to respond the global market which is being specialized. The features of MSE in Japan can be listed as follows. First, the MSE in Japan is developing the company through getting into niche markets which are hard for major companies to enter rather than developing markets in order to compete against major companies directly. While MSEs are endeavoring to build the business firmly in the domestic market, they can possess special and competitive technical skills through trials and errors; so that they can get a chance develop their business through independent business system rather than putting their effort to compete against major companies. Second, from the MSEs with competitive edge in the market, there are many contributions to the national exportation. Those MSEs produce in domestic and maintain the quality of high price products which need cutting-edge technology, while they relocate the low and middle priced goods to the country where manufacturing costs are low, so that they can maintain the price competitiveness. Third, the industrial structure in Japan is formed from dual structure between major companies and small sized companies. In other words, in Japan's industrial structure which are composed of subcontract structure, this dual structure has taken a major role of small sized companies' growth and manufacturing businesses' international competitive power. Forth, MSE in Japan adopt a strategy of putting their value on qualitative scale growth rather than quantitative scale growth. In this paper, the case of Japanese MSE is analyzed. Along with its long history of Industrialization, Japan has a corporate environment where the SSEs can develop as a MSE and later a LSE through a full-support system. Among its SSEs, there are a number of world class corporations equipped with a large domestic market, win-win cooperation with the LSEs and an independent technology development. It can also be observed that these SSEs develop into MSEs with sustainable growth potentials. This study will focus on the condition under which the MSEs of Japan have been developed, and how they have survived the competition between SSEs and LSEs. Through this study, this paper attempts to offer solutions to Korea's polarization between the SSE and LSE, while providing the basis for SSEs revitalization. In general, if both extremities phenomenon deepen between LSE and SSE, there are possible fears of occurring disutility in national economy by the monopolization of LSE. For that reason, enterprise group, which can make SSE or MSE compete LSE in some area and ease the monopoly and oligopoly problem, is needed. This awareness has been shared for ages long. Nevertheless, there is no legal definition for MSE in Japan, and there is no definition about the enterprise size or unified view of MSE between scholars, but it is defined differently by each of academical person or research institution and study meeting. For that reason, this paper will organize the definition of MSE in Japan, and then will propose the characteristics of the background which has made MSE secure competitiveness and sustainable growth in global market. This study focus on that because through this process, the positive change to the awareness of MSE can be proposed in Korea and to seek the policy direction for building institutional framework which can make SSE become MES. Through this way, the fundamentals for SSE to become MSE can be managed and some appropriate suggestions which will be able to make MSE enter the global market in the future can also be proposed. Due to these facts, this study is very important and well timed task. In a sense of this way, this study will examine the definition and role of MSE in Japan. after this examination, this study will deal with the status, special feature, and promotion policy for MSE. Through this analysis of MSE in Japan, the foundation which be able to set the desirable role model for MSE in Korea can be proposed. Also, the political implication which is needed to push ahead to contribute to creating employment and economic growth through sustainable growth of MSEs in economic system of Korea can be offered through this study. It has been found that Japan's MSE functions as an indispensable link among various industrial structures by holding a significant position in employment rate, production and value added. Although the MSEs took up less than 1% of the entire number of businesses with 2700 manufacturing firms and 7000 non-manufacturing firms, its employment ratios are about 15%, while taking about 25% of the manufacturing industry's exports. In industries such as machinery and electronics which is considered Japan's major industry, the MSEs showed a higher than average ratio of manufacturing exports and employment rate. It can be analyzed that behind Japan's advantageous industries, close and deeply knit MSEs exist. Although there are no clearly stated policies geared towards the MSEs by the Japanese government, various political measures exist such as the R&D Project and the inducement of cooperation between enterprises which gives room for MSEs to participate in the SSE policies. In relation to these findings, the following practical measures can be considered in order to revitalize Korea's MSEs: First, there is a need for a legal definition of MSE and the incentives to provide legal support for its growth. Second, if a law to support the MSEs is established, it could provide a powerful inducement for the SSE to grow as a MSE, rather than stay as a SSE. Third, there is a need for a strategy of MSEs to establish a stable base in the domestic market and then advance to the global market with the accumulated trial and error and competitiveness. Fourth, the SSE themselves need the spirit of entrepreneurship in order to make the leap to a MSE. Because if nothing is to be changed about the system on the firms that grew, and the parts of the past custom was left to be managed alone, confusion and absence of management can take place. No matter how much tax favors the government will give and no matter how much incentive there could be through the policies, there are limits for industries to higher the ability to propagate. And because of that it is a period where industries need their own innovative skills to reform their firms.

Dynamical Study on the Blasting with One-Free-Face to Utilize AN-FO Explosives (초유폭약류(硝油爆藥類)를 활용(活用)한 단일자유면발파(單一自由面發破)의 역학적(力學的) 연구(硏究))

  • Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.187-209
    • /
    • 1972
  • Drilling position is one of the most important factors affecting on the blasting effects. There has been many reports on several blasting factors of burn-cut by Messrs. Brown and Cook, but in this study the author tried to compare drilling positions of burn-cut to pyramid-cut, and also to correlate burn-cut effects of drilling patterns, not being dealt by Prof. Ito in his theory, which emphasized on dynamical stress analysis between explosion and free face. According to former theories, there break out additional tensile stress reflected at the free face supplemented to primary compressive stress on the blasting with one-free-face. But with these experimented new drilling patterns of burn-cut, more free faces and nearer distance of each drilling holes make blasting effects greater than any other methods. To promote the above explosive effect rationary, it has to be considered two important categories under-mentioned. First, unloaded hole in the key holes should be drilled in wider diameter possibly so that it breaks out greater stress relief. Second, key holes possibly should have closer distances each other to result clean blasting. These two important factors derived from experiments with, theories of that the larger the dia of the unloaded hole, it can be allowed wider secondary free faces and closes distances of each holes make more developed stress relief, between loaded and unloaded holes. It was suggested that most ideal distance between holes is about 4 clearance in U. S. A., but the author, according to the experiments, it results that the less distance allow, the more effective blasting with increased broken rock volume and longer drifted length can be accomplished. Developed large hole burn-cut method aimed to increase drifting length technically under the above considerations, and progressive success resulted to achieve maximum 7 blasting cycles per day with 3.1m drifting length per cycle. This achievement originated high-speed-drifting works, and it was also proven that application of Metallic AN-FO on large hole burn-cut method overcomes resistance of one-free-face. AN-FO which was favored with low price and safety handling is the mixture of the fertilizer or industrial Ammonium-Nitrate and fuel oil, and it is also experienced that it shows insensible property before the initiation, but once it is initiated by the booster, it has equal explosive power of Ammonium Nitrate Explosives (ANE). There was many reports about AN-FO. On AN-FO mixing ratio, according to these experiments, prowdered AN-FO, 93.5 : 6.5 and prilled AN-FO 94 : 6, are the best ratios. Detonation, shock, and friction sensities are all more insensitive than any other explosives. Residual gas is not toxic, too. On initation and propagation of the detonation test, prilled AN-FO is more effective than powered AN-FO. AN-FO has the best explosion power at 7 days elapsed after it has mixed. While AN-FO was used at open pit in past years prior to other conditions, the author developed new improved explosives, Metallic AN-FO and Underwater explosive, based on the experiments of these fundmental characteristics by study on its usage utilizing AN-FO. Metallic AN-FO is the mixture of AN-FO and Al, Fe-Si powder, and Underwater explosive is made from usual explosive and AN-FO. The explanations about them are described in the other paper. In this study, it is confirmed that the blasting effects of utilizing AN-FO explosives are very good.

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF