• Title/Summary/Keyword: Ratio of Reinforcement Bars

Search Result 131, Processing Time 0.022 seconds

Comparative in-plane pushover response of a typical RC rectangular wall designed by different standards

  • Dashti, Farhad;Dhakal, Rajesh P.;Pampanin, Stefano
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.667-689
    • /
    • 2014
  • Structural walls (also known as shear walls) are one of the common lateral load resisting elements in reinforced concrete (RC) buildings in seismic regions. The performance of RC structural walls in recent earthquakes has exposed some problems with the existing design of RC structural walls. The main issues lie around the buckling of bars, out-of plane deformation of the wall (especially the zone deteriorated in compression), reinforcement getting snapped beneath a solitary thin crack etc. This study compares performance of a typical wall designed by different standards. For this purpose, a case study RC shear wall is taken from the Hotel Grand Chancellor in Christchurch which was designed according to the 1982 version of the New Zealand concrete structures standard (NZS3101:1982). The wall is redesigned in this study to comply with the detailing requirements of three standards; ACI-318-11, NZS3101:2006 and Eurocode 8 in such a way that they provide the same flexural and shear capacity. Based on section analysis and pushover analysis, nonlinear responses of the walls are compared in terms of their lateral load capacity and curvature as well as displacement ductilities, and the effect of the code limitations on nonlinear responses of the different walls are evaluated. A parametric study is also carried out to further investigate the effect of confinement length and axial load ratio on the lateral response of shear walls.

An investigation into the shear strength of SFRC beams with opening in web using NFEM

  • Karimi, Mohammad;Hashemia, Seyed Hamid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.539-546
    • /
    • 2018
  • Making a transverse opening in concrete beams in order to accommodate utility services through the member instead of below or above of that, sometimes may be necessary. It is obvious that inclusions of an opening in a beam decreases its flexural and shear strengths. Fabricated steel bars are usually used to increase the capacity of the opening section, but details of reinforcements around the opening are dense and complex resulting in laborious pouring and setup process. The goal of this study was to investigate the possibility of using steel fibers in concrete mixture instead of complex reinforcement detailing order to strengthen opening section. Nonlinear finite element method was employed to investigate the behavior of steel fiber reinforced concrete beams. The numerical models were validated by comparison with experimental measurements tested by other investigators and then used to study the influence of fiber length, fiber aspect ratio and fiber content on the shear performance of SFRC slender beams with opening. Finally, it was concluded that the predicted shear strength enhancement is considerably influenced by use of steel fibers in concrete mixture but the effect of fiber length and fiber aspect ratio wasn't significant.

Nonlinear behavior of deep reinforced concrete coupling beams

  • Zhao, Z.Z.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.181-198
    • /
    • 2003
  • Six large scale models of conventionally reinforced concrete coupling beams with span/depth ratios ranging from 1.17 to 2.00 were tested under monotonically applied shear loads to study their nonlinear behavior using a newly developed test method that maintained equal rotations at the two ends of the coupling beam specimen and allowed for local deformations at the beam-wall joints. By conducting the tests under displacement control, the post-peak behavior and complete load-deflection curves of the coupling beams were obtained for investigation. It was found that after the appearance of flexural and shear cracks, a deep coupling beam would gradually transform itself from an ordinary beam to a truss composed of diagonal concrete struts and longitudinal and transverse steel reinforcement bars. Moreover, in a deep coupling beam, the local deformations at the beam-wall joints could contribute significantly (up to the order of 50%) to the total deflection of the coupling beam, especially at the post-peak stage. Finally, although a coupling beam failing in shear would have a relatively low ductility ratio of only 5 or even lower, a coupling beam failing in flexure could have a relatively high ductility ratio of 10 or higher.

Earthquake effect on the concrete walls with shape memory alloy reinforcement

  • Beiraghi, Hamid
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.491-506
    • /
    • 2019
  • Literature regarding concrete walls reinforced by super elastic shape memory alloy (SMA) bars is rather limited. The seismic behavior of a system concurrently including a distinct steel reinforced concrete (RC) wall, as well as another wall reinforced by super elastic SMA at the first story, and steel rebar at upper stories, would be an interesting matter. In this paper, the seismic response of such a COMBINED system is compared to a conventional system with steel RC concrete walls (STEEL-Rein.) and also to a wall system with SMA rebar at the first story and steel rebar at other stories ( SMA-Rein.). Nonlinear time history analysis at maximum considered earthquake (MCE) and design bases earthquake (DBE) levels is conducted and the main responses like maximum inter-story drift ratio and residual inter-story drift ratio are investigated. Furthermore, incremental dynamic analysis is used to accomplish probabilistic seismic studies by creating fragility curves. Results demonstrated that the SMA-Rein. system, subjected to DBE and MCE ground motions, has almost zero and 0.27% residual maximum inter-story drifts, while the values for the COMBINED system are 0.25% and 0.51%. Furthermore, fragility curves show that using SMA rebar at the base of all walls causes a larger probability of exceedance 3% inter-story drift limit state compared to the COMBINED system. Static push over analysis demonstrated that the strength of the COMBINED model is almost 0.35% larger than that of the two other models, and its general post-yielding stiffness is also approximately twice the corresponding stiffness of the two other models.

Effect of Transverse Reinforcement on the Shear Friction Capacity of Concrete Interfaces with Construction Joint (시공줄눈이 있는 콘크리트 경계면의 전단마찰 내력에 대한 보강철근의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.555-562
    • /
    • 2016
  • The objective of the present study is to evaluate the shear transfer capacity of transverse reinforcement at the concrete interfaces with smooth construction joint. The transverse reinforcing bars were classified into two groups: V-type for the arrangement perpendicular to the interface and X-type for inclined-crossing arrangement. The transverse reinforcement ratio at the interface varied from 0.0045 to 0.0135 for V-type and 0.0064 to 0.0045 for X-type. The mechanism analysis proposed for monolithic concrete interface, derived based on the upper-bound theorem of concrete plasticity, was modified to evaluate the shear friction capacity of concrete interfaces with smooth construction joint. Test results showed that the specimens with X-type reinforcement had lower amount of relative slippage at the interface and higher shear friction capacity than the companion specimens with V-type reinforcement. This observation was independent of the unit weight of concrete. The mean and standard deviation of the ratios between the experimental shear friction strength of smooth construction joints and predictions obtained from the proposed model are 1.07 and 0.14, respectively.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

Experimental investigation of SRHSC columns under biaxial loading

  • Wang, Peng;Shi, Qing X.;Wang, Feng;Wang, Qiu W.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.485-496
    • /
    • 2017
  • The behavior of 8 steel reinforced high-strength concrete (SRHSC) columns, which comprised of four identical columns with cross-shaped steel and other four identical columns with square steel tube, was investigated experimentally under cyclic uniaxial and biaxial loading independently. The influence of steel configuration and loading path on the global behavior of SRHSC columns in terms of failure process, hysteretic characteristics, stiffness degradation and ductility were investigated and discussed, as well as stress level of the longitudinal and transverse reinforcing bars and steel. The research results indicate that with a same steel ratio deformation capacity of steel reinforced concrete columns with a square steel tube is better than the one with a cross-shaped steel. Loading path affects hysteretic characteristics of the specimens significantly. Under asymmetrical loading path, hysteretic characteristics of the specimens are also asymmetry. Compared with specimens under unidirectional loading, specimens subjected to bidirectional loading have poor carrying capacity, fast stiffness degradation, small yielding displacement, poor ductility and small ultimate failure drift. It also demonstrates that loading paths affect the deformation capacity or deformation performance significantly. Longitudinal reinforcement yielding occurs before the peak load is attained, while steel yielding occurs at the peak load. During later displacement loading, strain of longitudinal and transverse reinforcing bars and steel of specimens under biaxial loading increased faster than those of specimens subjected to unidirectional loading. Therefore, the bidirectional loading path has great influence on the seismic performance such as carrying capacity and deformation performance, which should be paid more attentions in structure design.

Evaluation on Anchorage Performance of 57mm Headed Bars in Exterior Beam-Column Joint under Cyclic Loading (반복하중을 받는 외부 보-기둥 접합부에 정착된 57mm 확대머리철근의 정착성능평가)

  • Jung, Hyung-Suk;Chung, Joo-Hong;Choi, Chang-Sik;Bae, Baek-IL;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.68-75
    • /
    • 2021
  • In this study, the anchoring performance of 57mm headed bars anchored at the external beam-column joint under cyclic loading was evaluated. A total of 6 external beam-column joint test specimens were planned, and anchorage performance was evaluated by setting concrete compressive strength, side covering thickness, lateral reinforcement ratio, and fracture type as major experimental variables. As result of cyclic loading test, it was found that the factors that had the greatest influence on the anchoring capacity of the large-diameter headed bar anchored at the joint were the side cover thickness and the transverse reinforcing bar. It was confirmed that the 57mm large-diameter headed bar anchored at the external beam-column joint showed sufficient anchoring capacity even under cyclic loading.

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.