• Title/Summary/Keyword: Ratio control valve

Search Result 168, Processing Time 0.026 seconds

Analysis of Ratio Changing Characteristics of a Metal V-Belt CVT Adopting Primary Pressure Regulation (압력제어 방식 금속 벨트 CVT 변속특성 해석)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.179-187
    • /
    • 2001
  • In this paper, a primary pressure regulating type ratio control system is developed for a metal belt CVT, and the CVT ratio changing characteristics are investigated by simulation and experiment. The hydraulic part of the ratio control system has a simple structure with one 3-way spool valve as a main ratio control valve and one bleed type variable force solenoid as a pilot valve. The mathematical modelling of the CVT hydraulic system is derived by considering the CVT shift dynamics. Simulation results of CVT speed ratio and the primary pressure agree with the experimental results demonstrating the validity of the dynamic models. It is found from the simulation and experimental results that the response time of speed ratio and primary pressure can be shortened by increasing the ratio control valve port area, and the size of feedback orifice of ratio control valve gives a damping effect on the primary pressure oscillation.

  • PDF

Effect of Control Valve Flow Rates Characteristics on the Performance of an Air Spring (제어밸브의 유량특성에 따른 에어스프링의 성능 변화)

  • Han, Seung Hun;Jang, Ji Seong;Ji, Sang Won
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.8-14
    • /
    • 2016
  • This study describes the effect of the critical pressure ratio of a control valve on the performance of an air spring system composed of an air spring, auxiliary chamber, control valve and mass in order to suggest a more efficient design for an air spring system. The critical pressure ratio of the control valve is assumed to have a fixed value, but the critical pressure ratio of the control valve is known to have various values between 0.05 and 0.6, and the effect of the variation of the critical pressure ratio on the performance of the air spring system has not yet been reported. The analysis derives nonlinear and linear governing equations of the air spring system, including the critical pressure ratio of the control valve. This simulation study is presented to show that the impedance and transmissibility characteristics of the air spring system change due to variations in the critical pressure ratio of the control valve as well as its sonic conductance. As a result, the critical pressure ratio of the control valve should be maintained as large as possible to improve the vibration isolation characteristics of the air spring system.

A Study of Backfire Control in a Hydrogen-Fueled Engine with External Mixture Using Changes of Valve Overlap Period (밸브오버랩기간 변화에 의한 흡기관 분사식 수소기관의 역화억제에 관한 연구)

  • Kang, J.K.;Cong, Huynh Thanh;Noh, K.C.;Lee, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3311-3316
    • /
    • 2007
  • To analyze the influence of valve overlap period on a backfire occurrence, the single cylinder research engine with MCVVT(Mechanical Continuous Variable Valve Timing) system is developed and backfire limit equivalence ratio defined as fuel-air ratio equivalence ratio at which backfire occurs is examined according to various valve overlap period. The MCVVT is the system to control valve overlap period by mechanical device. It is estimated that the lower valve overlap period has the higher backfire limit equivalence ratio though the same energy is supplied. When the valve overlap period is changed from 30$^{circ}$ CA to 0$^{circ}$ CA, backfire limit equivalence ratio is increased 74%, approximately. It means that valve overlap period is concern in backfire occurrence, and may be one of the methods for controlling back fire occurred in a $H_2$ engine.

  • PDF

A Study on the Steady Flow Characteristics by PDA and Tumble Control Valve in Combustion Chamber (스월 및 연소실 형상에 의한 정상유동특성에 관한 연구)

  • Kim Dae-Yeol;Han Young-Chool;Park Bong-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.74-82
    • /
    • 2006
  • This paper describes the steady flow characteristics due to PDA and tumble control valve in combustion chamber. We also investigated the flow inclination angle defined as the inverse tangent of non-dimensional rig tumble(NRT) devided by non-dimensional rig swirl(NRS) to find dominant flow direction. So we adapted two different types of PDA valve(port deactivation valve) to strengthen a swirl flow. The in-cylinder swirl flow different tendency between with/without PDA valve. It might be thought to be affected by swirl flow. We could find that tumble ratio and swirl ratio is different by PDA valve. The comparison are taked account of the swirl, the tumble ratio comparison in same mass flow rate. As a result, PDA valve is better than tumble control valve both in steady flow condition and swirl, tumble ratio. The data from present study are available for design of engine as the basic data.

A Study of ADS Slip Ratio Control using Solenoid Valve (전자밸브를 이용한 ABS 슬립율 제어에 관한 연구)

  • Choi, Jong-Hwan;Kim, Sung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.676-681
    • /
    • 2001
  • ABS is a safety device, which adds hydraulic system to the existing brake system to prevent wheel from locking, so we can obtain maximum braking force on driving. The hydraulic system to control braking pressure consists of sol-flow type using solenoid valve, flow control valve or consists of sol-sol type using two solenoid valve. In this paper, the hydraulic system in ABS is composed of sol type using a 3port-2position solenoid valve, and vehicle system is composed of 1/4 vehicle model. And slip ratio is controlled using PWM (Pulse-Width-Modulation) control algorithm. Braking friction coefficient and tracking friction coefficient which are described by slip ratio's function have maximum value when slip ratio has its value from 0.1 to 0.3. And slip ratio is controlled constantly in this boundary value even in the variation of road's condition in some boundary.

  • PDF

Low Level Control of Metal Belt CVT Considering Shift Dynamics and Ratio Valve On-Off Characteristics

  • Kim, Tal-Chol;Kim, Hyun-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.645-654
    • /
    • 2000
  • In this paper, low level control algorithms of a metal belt CVT are suggested. A feedforward PID control algorithm is adopted for line pressure based on a steady state relationship between the input duty and the line pressure. Experimental results show that feedforward PID control of the line pressure guarantees a fast response while reducing the pressure undershoot which may result in belt slip. For ratio control, a fuzzy logic is suggested by considering the CVT shift dynamics and on-off characteristics of the ratio control valve. It is found from experimental results that a desired speed ratio can be achieved at steady state in spite of the fluctuating primary pressure. It is expected that the low level control algorithms for the line pressure and speed ratio suggested in this study can be implemented in a prototype CVT.

  • PDF

Analysis of Line Regulator Valve and Ratio Control Valve Considering CVT Shift Dynamics (CVT 변속 동역학을 고려한 라인 레귤레이터 및 변속비 제어 밸브의 응답 특성 해석)

  • 정근수;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.81-91
    • /
    • 2000
  • Dynamic models of line regulator valve(LRV) and ratio control valve (RCV) are obtained for an electronic controlled CVT. LRV and RCV are operated by variable force solenoid(VFS). Considering the CVT shift dynamics, oil pump's efficiency and saturation characteristics of VFS, simulations are performed and compared with test results. Simulation results are in good agreement with the experiments, which shows the validity of the dynamic models of LRV and RCV obtained. In addition, the effects of the orifice size in the exhaust port of RCV are investigated. Simulation results show that as the orifice size decreases, the residual pressure in the primary actuator increases which insures the large torque transmission capacity, meanwhile the duration time for the downshift increases.

  • PDF

A Study on Measurement and Automation Method of Cylinder Head Swirl (실린더 헤드 스월 측정 및 자동화 방법에 관한 연구)

  • Lee Choong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.92-99
    • /
    • 2006
  • The swirl ratio of a charge in the cylinder was estimated by calculating the ratio of the rotary speed of charge which could be simulated from the rotary speed of paddle in the swirl measurement apparatus, to the engine speed which could be calculated by measuring intake air flow rate. The automation of the swirl ratio measurement for cylinder head was achieved by controling both valve lift in cylinder head and a suction pressure of surge tank using two step-motors. The number of measurement position for calculating mean swirl ratio was varied by adjusting the interval of valve lift. The mean swirl ratio with varying the number of measurement position showed nearly constant value. Two measurement methods for measuring the swirl ratio were compared, one was to control the suction pressure of the surge tank with PID (proportional, integral, differential) mode with by-pass valve controlled by the step motor and the other did not control the surge tank pressure by fixing the by-pass valve. The difference of the mean swirl ratio between the two measurement methods showed nearly constant value with varying the number of measurement position. This means that the w/o PID control method could be preferred to the PID control method which has been used, due to the simpleness of the swirl measurement.

A Study on Analysis of Intake Flow in a 5-valves Gasoline Engine by using a Two Color PIV System (이색 PIV를 이용한 5밸브 가솔린 엔진의 흡입 유동 해석)

  • Woo, Young-Wan;Park, Sang-Chan;Lee, Ki-Hyung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.933-938
    • /
    • 2001
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These vehicles have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, velocity profiles at near intake valves were inspected by using a two-color PIV and laser sheet method with tumble control valve(TCV). In addition, steady flow tests were performed to quantify tumble ratio on flow-fields generated with a TCV. These experimental results show that the tendency of the tunble ratio in intake 3-valve engine is different from the one in intake 2-valve engine. From this results, the intake flow characteristics around intake valves were made clear.

  • PDF

A Study on PWM Control of Hydraulic Cylinder Using High Speed Solenoid Valve (고속전자밸브를 이용한 유압실린더의 PWM 제어에 관한 연구)

  • Park, S.H.;Lee, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.138-147
    • /
    • 1995
  • The conventional PWM method, which was used in controlling the on-off valve, such as high-speed solenoid valve, was modulating the width of the pulse applied to the valve, by selecting arbitrary sampling time and modulating the duty-ratio in proportion to the error. However, in this method, a selection of long sampling time was inevitable and it was unable to get a high accuracy and a quick response. This study is for designing an appropriate controller for high-speed solenoid valve by proposing an improved duty-ratio modulation method using the Saw-toothed Carrier Wave which enables a short sampling time selection, high accuracy of control, and a quick response. Test which was carried out in the laboratory shows that transient and steady state response could be improved by PID controller.

  • PDF