• 제목/요약/키워드: Rate-of-rise

검색결과 1,347건 처리시간 0.033초

서중환경의 단열온도상승 특성을 고려한 고강도 콘크리트의 압축강도 특성 (Compressive Strength Properties of high strength concrete considering Adiabatic temperature rise of hot weather environment)

  • 이은경;함은영;구경모;이보경;미야우치 히로유키;김규용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.56-57
    • /
    • 2013
  • In this study, in regard to concrete considering variety of admixture content rate, we evaluated property of adiabatic temperature rise. By setting up high temperature history, we evaluated effect to compression strength property of high strength concrete by early high temperature history. As a result, early high temperature history accelerated Hydration reaction of cement and contribute early strength development but it didn't accomplish performance objective in long-term aged.

  • PDF

펄스 반복률에 의한 반도체 소자의 오동작 모드와 고장률에 관한 연구 (A Study on Malfunction Mode and Failure Rate Properties of Semiconductor by Impact of Pulse Repetition Rate)

  • 박기훈;방정주;김륙완;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제28권6호
    • /
    • pp.360-364
    • /
    • 2015
  • Electronic systems based on solid state devices have changed to be more complicated and miniaturized as the electronic systems developed. If the electronic systems are exposed to HPEM (high power electromagnetics), the systems will be destroyed by the coupling effects of electromagnetic waves. Because the HPEM has fast rise time and high voltage of the pulse, the semiconductors are vulnerable to external stress factor such as the coupled electromagnetic pulse. Therefore, we will discuss about malfunction behavior and DFR (destruction failure rate) of the semiconductor caused by amplitude and repetition rate of the pulse. For this experiment, the pulses were injected into the pins of general purpose IC due to the fact that pulse injection test enables the phenomenon after the HPEM is coupled to power cables. These pulses were produced by pulse generator and their characteristics are 2.1 [ns] of pulse width, 1.1 [ns] of pulse rise time and 30, 60, 120 [Hz] of pulse repetition rate. The injected pulses have changed frequency, period and duty ratio of output generated by Timer IC. Also, as the pulse repetition rate increases the breakdown threshold point of the timer IC was reduced.

DAF공정에서 개체군 수지를 이용한 기포-플록 응집체의 부상효율과 수리학적 부하율의 운전특성 평가 (Evaluation on Flotation Efficiency of Bubble-floc Agglomerates and Operation Characteristics of Hydraulic Loading Rate Using Population Balance in DAF Process)

  • 곽동희
    • 상하수도학회지
    • /
    • 제22권5호
    • /
    • pp.531-540
    • /
    • 2008
  • The main advantage of dissolved air flotation (DAF) in water treatment process is the small dimension compared with conventional gravity sedimentation and it can be basically reduced by the separation zone performed with the short solid-liquid separation time. Fine bubbles make such a short time possible to carry out solid from liquid separation as a collector on the course of water treatment. Therefore, the dimension of separation zone in DAF process is practically determined by the rise velocity of the bubble-floc agglomerates, which is a floc attached with several bubbles. To improve flotation velocity and particle removal efficiency in DAF process, many researchers have tried to attach bubbles as much as possible to flocs. Therefore, the maximum number of attached bubble on a floc and the rise velocity of bubble-floc agglomerates considered as the most important factor to design the separation zone of flotation tank in DAF process was simulated based on the population balance theory. According to the simulation results of this study, the size and volume concentration of bubble influenced on the possible number of attached bubble on a floc. The agglomerates attached with smaller bubble was more sensitive to hydraulic loading rate in the separation zone of DAF process. For the design of a high rate DAF process applied over surface loading 40 m/hr. it is required a precise further study on the variation of bubble property and behavior including in terms of bubble size distribution.

Correlation between mEPSC Amplitude and Rise Time upon the Blockade of AMPA Receptor Desensitization at Hippocampal Synapses

  • Jung, Su-Hyun;Choi, Suk-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권2호
    • /
    • pp.81-85
    • /
    • 2002
  • Conventional views of synaptic transmission generally overlook the possibility of 'postfusional-control' the regulation of the speed or completeness of transmitter release upon vesicular fusion. However, such regulation often occurs in non-neuronal cells where the dynamics of fusion-pore opening is critical for the speed of transmitter release. In case of synapses, the slower the transmitter release, the smaller the size and rate-of-rise of postsynaptic responses would be expected if postsynaptic neurotransmitter receptors were not saturated. This prediction was tested at hippocampal synapses where postsynaptic AMPA-type glutamate receptors (AMPAR) were not generally saturated. Here, we found that the small miniature excitatory postsynaptic currents (mEPSCs) showed significantly slower rise times than the large mEPSCs when the sucrose-induced mEPSCs recorded in cyclothiazide (CTZ), a blocker for AMPAR desensitization, were sorted by size. The slow rise time of the small mEPSCs might result from slow release through a non-expanding fusion pore, consistent with postfusional control of neurotransmitter release at central synapses.

랙크식 물류창고 조기 화재감지를 위한 최적 화재감지기 설치방법에 관한 실험연구 (An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses)

  • 최기옥;김동석;홍성호
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.38-45
    • /
    • 2017
  • This paper is an experimental study to find an optimal detection method for detecting fire early in a rack-type warehouse stored with goods. In this study, we constructed rack-type structure with the fourth floor of 13.5 m high and conducted fire experiments which were to measure flow of heat/smoke in rack-type structure and response time of fire detectors. The detectors used at experiments were fixed temperature type detectors, rate of rise detectors, photoelectric smoke detectors, air sampling smoke detectors and flame detectors. The used ignition sources are n-heptane fire for response of heat detection and cotton fire for response of smoke detection. The fixed temperature type detectors, rate of rise detectors and photoelectric detectors were installed to every rack level respectively. The results show that the rate of rise detector should be installed every 2 levels and photoelectric smoke detector should be installed every 4 levels for the early stage fire detection. Air sampling smoke detectors can detect fire early in response to control of sensitivity, but there is a problem in false alarm. The fixed temperature detector is not suitable for early stage fire detection in warehouse and flame detector not worked if flame is not visible, so it need to install combination with other detector.

인공 가속열화에 따른 차동식 스포트형 열감지기의 고장 원인분석 (Failure Analysis of the Rate of Rise Spot Type Heat Detector on Artificially Accelerated Aging)

  • 김찬영
    • 한국화재소방학회논문지
    • /
    • 제25권4호
    • /
    • pp.48-55
    • /
    • 2011
  • 차동식 스포트형 공기 팽창식 열감지기를 인공 가속열화 시켰을 때 발생하는 고장 원인에 대하여 분석하였다. 감지기에 고장이 발생하는 원인은 감열실 금속을 고정하는 접합재(binder)가 플라스틱 몰딩(moulding)에서 분리되어 발생하는 고장과, 감열실 금속과 다이어프램 금속을 고정하는 플라스틱 몰딩에 균열이 발생되는 고장으로 확인되었다. 고장이 발생하지 않은 감지기는 감열실 금속 및 다이어프램 금속이 플라스틱 몰딩에 접합재로 완전히 부착되어 있었다. 또한 2010G 감지기는 접합재의 기계적 강도를 향상시키기 위하여 접합재에 유리강화섬유가 추가되었음이 확인되었다. 감지기 종류별에 따른 플라스틱과 접합재의 밀도에는 큰 차이가 없었다. 그러나 감지기의 플라스틱에 대한 열중량분석(TGA) 결과, 제작년도는 같지만 제조회사가 다른 2005A와 2005B의 플라스틱 열적특성이 동일하지 않은 것으로 확인되었다.

Multi-zone 모델링을 통한 온도성층화와 농도성층화가 존재하는 DME HCCI 엔진의 운전영역에 관한 수치해석연구 (Comparison of DME HCCI Operating Ranges for the Thermal Stratification and Fuel Stratification based on a Multi-zone Modeling)

  • 정동원;임옥택
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.35-41
    • /
    • 2011
  • This work investigates the potential of in-cylinder thermal stratification and fuel stratification for extending the operating ranges in HCCI engines, and the coupling between thermal stratification and fuel stratification. Computational results areemployed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKINII kinetics rate code, and kinetic mechanism for di-methyl ether (DME). This study shows that the potential of thermal stratification and fuels stratification for extending the high-load operating limit by a staged combustion event with reduced pressure-rise rates is very large. It was also found that those stratification offers good potential to extend low-load limit by a same mechanism in high-load. However, a combination of thermal stratification and fuel stratification is not more effective than above stratification techniques for extending the operating ranges showing similar results of fuel stratification. Sufficient condition for combustion (enough temperature for) turns misfire in low-load limit to operate engines, which also leads to knock in high-load limit abruptly due to the too high temperature with high. DME shows a potential for maximizing effect of stratification to lower pressure-rise rate due to the characteristics of low-temperature heat release.

비틀어진 형상(Twisted) 고층 구조물의 평면 회전 각도별 동적 응답 분석 (Dynamic Response Analysis of Twisted High-Rise Structures by Plane Rotation Angle)

  • 이다혜;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.105-112
    • /
    • 2021
  • In this paper, the dynamic response was analyzed by performing linear dynamic analysis using historic earthquake loads on twisted-shaped structures and fixed structure among free-form high-rise structures with atypical elevation shape following prior studies. In addition, the dynamic characteristics of the analysis models according to the plane rotation angle of the twisted structure were compared and analyzed. As a result of the analysis, as the plane rotation angle of the twisted structure increased, the interlayer deformation rate increased in the high-rise part of 50th floors or more. The story shear force and the story absolute acceleration were similar in the entire structure. In the case of the story shear force, the response of the twisted shape model was rather reduced in the middle part. As a result of analyzing the dynamic response, the vulnerable layer where the response amplification of the twisted structure occurs was found to be 31st story.

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • 제17권2호
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

고층빌딩 연돌 현상의 영향인자 분석 (Analysis of impact factors affecting on the stack effect in high-rise building)

  • 오진환;송두삼;윤성민;남유진
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.95-101
    • /
    • 2016
  • Purpose: Recently, high-rise buildings are popular in korea due to high rate of land usage and cost performance in urban area. However, high-rise building causes several problems such as safety issues, cooling/heating load, stack effect, disaster prevention etc. The stack effect is one of the representative problems. Even though there are many researches on stack effect, there are few studies on design guideline considering local condition. Method: This study focuses on the change of pressure distribution according to the design factors which affects the airflow in high-rise residential buildings by simulation analysis. In this study, city, building floor, stairwell door leakage area, elevator door leakage area and changes of layout were considered ad the design factor. Result: The simulation results indicate that building height and ambient air temperature are significant design factor for stack effect.